Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Perronnin, F. Sánchez, J. Yan Liu |
| Copyright Year | 2010 |
| Description | Author affiliation: Research Centre Europe (XRCE) (Perronnin, F.; Sánchez, J.; Yan Liu) |
| Abstract | Kernel machines rely on an implicit mapping of the data such that non-linear classification in the original space corresponds to linear classification in the new space. As kernel machines are difficult to scale to large training sets, it has been proposed to perform an explicit mapping of the data and to learn directly linear classifiers in the new space. In this paper, we consider the problem of learning image categorizers on large image sets (e.g. > 100k images) using bag-of-visual-words (BOV) image representations and Support Vector Machine classifiers. We experiment with three approaches to BOV embedding: 1) kernel PCA (kPCA) [15], 2) a modified kPCA we propose for additive kernels and 3) random projections for shift-invariant kernels [14]. We report experiments on 3 datasets: Cal-tech101, VOC07 and ImageNet. An important conclusion is that simply square-rooting BOV vectors – which corresponds to an exact mapping for the Bhattacharyya kernel – already leads to large improvements, often quite close to the best results obtained with additive kernels. Another conclusion is that, although it is possible to go beyond additive kernels, the embedding comes at a much higher cost. |
| Starting Page | 2297 |
| Ending Page | 2304 |
| File Size | 276778 |
| Page Count | 8 |
| File Format | |
| ISBN | 9781424469840 |
| ISSN | 10636919 |
| e-ISBN | 9781424469857 |
| DOI | 10.1109/CVPR.2010.5539914 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-06-13 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Large-scale systems Kernel Support vector machines Support vector machine classification Costs Europe Machine learning Image representation Principal component analysis Computer vision |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Vision and Pattern Recognition Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|