Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Stacker, P.A. Asher, M.S. Kusterer, T.L. Moore, G.T. Watson, D.P. Pekala, M.E. Harris, A.J. Bristow, J.O. |
| Copyright Year | 2004 |
| Description | Author affiliation: Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD, USA (Stacker, P.A.; Asher, M.S.; Kusterer, T.L.; Moore, G.T.; Watson, D.P.; Pekala, M.E.; Harris, A.J.) |
| Abstract | Distributed spacecraft systems concepts have been developed to leverage the inherent advantage of multiple, redundant sensing assets, including expanded capability, improved robustness, and graceful functional degradation. Both military and civilian missions have been advanced, with near-term technology demonstration efforts designed to serve as pathfinders to fully capable systems to meet future challenges. Distributing capability among multiple platforms, however, results in a fundamental increase in the complexity of coordinating and operating space systems due to delays in state knowledge and the need to integrate individual spacecraft autonomy within the broader system context. At the same time distributed spacecraft systems typically require added capabilities relative to monolithic spacecraft designs, such as command and control architectures that support diverse communication channels for functions such as crosslink communication and relative navigation measurements. The importance of these additional capabilities is particularly evident in relative navigation functionality, which in many systems may dominate absolute orbit determination requirements. This work describes a technique to address the fundamental need for relative navigation among distributed space assets that focuses on a minimalist hardware implementation that is suited for microsatellites, rovers, and other potential physically limited systems. Test results are provided from experiments implemented on The Johns Hopkins University Applied Physics Laboratory's crosslink transceiver (CLT) operating as a crosslink communication and navigation system in a time-division multiple access modes. To address the coordination and operation of a distributed spacecraft system under conditions that require capabilities such as regular relative navigation and communication, a flight autonomy architecture is defined that specifically addresses the complexities of controlling multiple, distributed assets. This architecture is based on the use of model-based programming and discrete event systems that use explicit logic models of spacecraft hardware and software components coupled with high-level control strategy specifications. |
| Sponsorship | Aerosp. and Electron. Syst. Soc |
| File Size | 686998 |
| File Format | |
| ISBN | 0780381556 |
| ISSN | 1095323X |
| DOI | 10.1109/AERO.2004.1367642 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2004-03-06 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Navigation Space vehicles Space technology Hardware Computer architecture Communication system control Logic programming Robustness Degradation Delay systems |
| Content Type | Text |
| Resource Type | Article |
| Subject | Aerospace Engineering Space and Planetary Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|