Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Nasir, M.L. John, R.I. Bennett, S.C. Russell, D.M. |
| Copyright Year | 2000 |
| Description | Author affiliation: Centre for Comput. Intelligence, De Montfort Univ., Leicester, UK (Nasir, M.L.) |
| Abstract | The paper reports on the use of modular neural networks for predicting corporate bankruptcy. We obtained our financial, as well as, political and economic data from The London Stock Exchange, JORDANS financial database of major British public and private companies, and the Bank of England. In the past, various statistical techniques, such as univariate and multivariate discriminant analysis have been used in the modelling of corporate bankruptcy prediction. We use domain expert knowledge to select, and organise data in the modular neural network architecture constructed for this study. There are three sub-networks representing the periods, 1994, 1995, and 1996. Each sub-network is made of five adjacent networks representing the Balance Sheet network, the Profit and Loss network, the Financial Summary network, the Key Financial Ratios network, and the Economic and Political factors network. These adjacent networks although coupled but not linked at the input level represent five facets of failure in predicting corporate bankruptcy. The training sets represent data for 2500 companies selected randomly from a population of 270000 sample. The trained neural network will access 435000 data records before making a prediction for the particular company. The results obtained shows that neural networks outperform statistical techniques in modelling corporate failure prediction. |
| Starting Page | 86 |
| Ending Page | 91 |
| File Size | 376173 |
| Page Count | 6 |
| File Format | |
| ISBN | 0780364295 |
| DOI | 10.1109/CIFER.2000.844606 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2000-03-28 |
| Access Restriction | Subscribed |
| Rights Holder | Authors |
| Subject Keyword | Neural networks Economic forecasting Predictive models Computational intelligence Finance Stock markets Databases Pattern recognition Sections Convergence |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|