Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Hui Li |
Copyright Year | 2007 |
Description | Author affiliation: Leiden Inst. of Adv. Comput. Sci., Leiden Univ., Leiden (Hui Li) |
Abstract | Experimental performance studies on computer systems, including Grids, require deep understandings on their workload characteristics. The need arises from two important and closely related topics in performance evaluation, namely, workload modeling and performance prediction. Both topics rely heavily on the representative workload data and have their arsenal from statistics and machine learning. Nevertheless, their goals and the nature of research differ considerably. Workload modeling aims at building mathematical models to generate workloads that can be used in simulation-based performance evaluation studies. It should statistically resemble the original real-world data therefore marginal statistics and second-order properties such as autocorrelation and power spectrum are important matching criteria. Performance prediction, on the other hand, intends to provide realtime forecast of important performance metrics (such as application run time and queue wait time) which can support Grid scheduling decisions. From this perspective prediction accuracy as well as performance should be considered to evaluate candidate techniques. My PhD research focuses primarily on these two topics in space-shared, data-intensive Grid environments. Starting from a comprehensive workload analysis with emphasis on the correlation structures and the scaling behavior, several basic job arrival patterns such as pseudo-periodicity and long range dependence are identified. Models are further proposed to capture these important arrival patterns and a complete workload model including run time is being investigated. The strong autocorrelations present in run time and queue wait time series inspire the research for performance prediction based on learning from historical data. Techniques based on a instance based learning algorithm and several improvements are proposed and empirically evaluated. Research plans are proposed to use the results of workload modeling and performance prediction in the evaluation of scheduling strategies in data-intensive Grid environments. |
Starting Page | 869 |
Ending Page | 874 |
File Size | 114589 |
Page Count | 6 |
File Format | |
ISBN | 0769528333 |
DOI | 10.1109/CCGRID.2007.84 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2007-05-14 |
Publisher Place | Brazil |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Grid computing Predictive models Autocorrelation Statistics Mathematical model Measurement Physics computing Computer science Electronic mail Home computing |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|