Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Nanuwa, S.S. Seker, H. |
| Copyright Year | 2008 |
| Description | Author affiliation: Centre for Comput. Intell., De Montfort Univ., Leicester (Nanuwa, S.S.; Seker, H.) |
| Abstract | There have been a number of techniques developed for the prediction of protein structural classes, however, they show various degrees of accuracies over different assessment procedures and, in particular, the role of sequence-driven-features (SDF) not rigorously investigated. Therefore, the aim of this study is to carry out the largest comprehensive and consistent investigation on approximately 1500 protein sequence-driven-features that form 65 subsets in order to develop a robust predictive model and identify how well these feature(s) are at predicting protein structural classes. For evaluation of the features, two high quality 40% (or less) homology datasets that contain over 7000 protein sequences were extracted from proteomic databases. As a predictive technique, an optimum K-Nearest Neighbour Classifier, namely multiple-K-NN (MKNN) was developed, which not only records MKNN results, but also a predictive accuracy for each K nearest neighbourhood for K=1 to 11. In order to make the analyses consistent, three different cross-validation test procedures, 10-fold, leave-one-out and independent set, were used for all data sets and methods implemented. Over 5000 individual predictive results obtained, no firm consensus found on which features are highly associated with protein structural classes. However, interestingly, the best subsets of the features are found to be traditional AAC (48.62%) for 10-fold and (50.09%) for LOO, and dipeptide composition (85.91%) for independent set. The results appear to suggest that the AAC features are one of the best two subsets over 65 different subsets. Interestingly, in particular, with pseudo-amino-acid composition (PseAAC), unlike other research results presented in the literature, this investigation finds that there is no statistical improvement obtained from the sequence-order effect aspect (lamda) of PseAAC, which averaged 39.15%. The results also suggest that most of its predictive power comes from the AAC part that averaged at 46.84%, and the overall average predictive accuracy for PseAAC is 47.86%. This information appears to suggest that this feature set, which is claimed to better capture sequence order, yields almost no improvement and can be considered a redundant and noisy feature set. It should be noted that overall outcome of this comprehensive study sheds light not only in structural class prediction, but also other proteomic studies. |
| Starting Page | 1 |
| Ending Page | 6 |
| File Size | 1454775 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781424428441 |
| DOI | 10.1109/BIBE.2008.4696703 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2008-10-08 |
| Publisher Place | Greece |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Protein engineering Accuracy Sequences Predictive models Proteomics Robustness Spatial databases Testing Computational biology Biology computing |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|