Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Jianfang Zhu Dan Jiao |
| Copyright Year | 1963 |
| Abstract | Existing methods for solving the low-frequency breakdown problem associated with full-wave solvers rely on low-frequency approximations, which has left a number of research questions to be answered. The conductors are also generally treated as perfect conductors and the dielectric loss is not considered. In this work, a rigorous method that does not utilize low-frequency approximations is developed to eliminate the low frequency breakdown problem for the full-wave finite-element based analysis of general 3-D problems involving inhomogeneous lossless and/or lossy dielectrics and nonideal conductors. This method has been validated by the analysis of realistic on-chip circuits at frequencies as low as dc. Furthermore, it is applicable to both low and high frequencies. In this method, the frequency dependence of the solution to Maxwell's equations is explicitly and rigorously derived from dc to high frequencies. In addition to eliminating the low-frequency breakdown, such a theoretical model of the frequency dependence can be used to understand how the field solution, in a complicated 3-D problem with both lossless/lossy inhomogeneous dielectrics and nonideal conductors, should scale with frequency and at which frequency full-wave effects become important. |
| Sponsorship | IEEE Microwave Theory and Techniques Society |
| Starting Page | 3294 |
| Ending Page | 3306 |
| Page Count | 13 |
| File Size | 848577 |
| File Format | |
| ISSN | 00189480 |
| Volume Number | 59 |
| Issue Number | 12 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2011-12-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Conductors Electric breakdown Dielectric losses Eigenvalues and eigenfunctions Electromagnetic analysis Nonhomogeneous media Frequency response low-frequency breakdown Broadband frequency response electromagnetic analysis finite-element methods full-wave analysis |
| Content Type | Text |
| Resource Type | Article |
| Subject | Condensed Matter Physics Electrical and Electronic Engineering Radiation |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|