Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Koyama, D. Nakamura, K. |
| Copyright Year | 1986 |
| Abstract | Ultrasonic manipulation of small particles, including liquid droplets, over long distances is discussed. It is well known that particles can be trapped at the nodal points of an acoustic standing wave if the particles are much smaller than the wavelength of the standing wave. We used an experimental setup consisting of a 3-mm-thick, 605-mm-long duralumin bending vibrating plate and a reflector. A bolt-clamped Langevin transducer with horn was attached to each end of the vibrating plate to generate flexural vibrations along the plate. A plane reflector with the same dimensions as the vibrating plate was installed parallel to the plate at a distance of approximately 17 mm to generate an ultrasonic standing wave between them and to trap the small particles at the nodal lines. The acoustic field and acoustic radiation force between the vibrator and reflector were calculated by finite element analysis to predict the positions of the trapped particles. The sound pressure distribution was measured experimentally using a scanning laser Doppler vibrometer. By controlling the driving phase difference between the two transducers, a flexural traveling wave can be generated along the vibrating plate, and the vertical nodal lines of the standing wave and the trapped particles can be moved. The flexural wave was excited along the vibrator at 22.5 kHz. A lattice standing wave with a wavelength of 35 mm in the length direction could be excited between the vibrator and the reflector, and polystyrene spheres with diameters of several millimeters could be trapped at the nodal lines of the standing wave. The experimental and calculated results showed good agreement for the relationship between the driving phase difference and the positions of the trapped particles. Noncontact transportation of the trapped particles over long distances could be achieved by changing the driving phase difference. The position of the trapped particles could be controlled to an accuracy of 0.046 mm/deg. An ethanol droplet could also be trapped and moved. |
| File Size | 1716340 |
| File Format | |
| ISSN | 08853010 |
| Volume Number | 57 |
| Issue Number | 5 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-05-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Air transportation Acoustic transducers Acoustic waves Ultrasonic transducers Finite element methods Acoustic measurements Pressure measurement Ultrasonic variables measurement Vibrometers Laser excitation |
| Content Type | Text |
| Resource Type | Article |
| Subject | Acoustics and Ultrasonics Instrumentation Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|