Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Wang, M.M. Lei Xiao Brown, T. Min Dong |
| Copyright Year | 2002 |
| Abstract | Orthogonal frequency division multiplexing (OFDM) has become a promising physical layer modulation technology for beyond 3G or 4G wireless communications due to effective inter-symbol interference mitigation for high speed data transmission. However, the timing of the OFDM symbol, i.e., the placement of the DFT collection window in a multi-path time dispersive channel remains an important and challenging issue in OFDM receiver design. An erroneous timing decision creates inter-symbol interference (ISI), inter-carrier interference (ICI), channel attenuation, and channel estimation error, which leads to a penalty on the collected OFDM symbol signal to noise ratio (SNR) resulting in an irreducible error floor. In this paper we quantify such effects and derive an optimal OFDM symbol timing solution in the sense of maximizing the signal to interference ratio (SIR) of the collected OFDM symbol. A practical timing algorithm, referred to as the equilibrium algorithm, is then developed to approximate the optimal timing decision. Compared with existing schemes in the literature, the proposed approach does not rely on explicit detection of individual channel paths or the delay spread boundary and therefore greatly reduces timing complexity. The equilibrium algorithm performs nearly as well as the optimal solution over a variety of channel delay spreads, is simple to implement, and is robust to channel estimation errors. |
| File Size | 843588 |
| File Format | |
| ISSN | 15361276 |
| Volume Number | 8 |
| Issue Number | 10 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2009-10-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Timing Wireless communication Channel estimation Signal to noise ratio Physical layer OFDM modulation Data communication Dispersion Intersymbol interference Attenuation OFDM communications, OFDM symbol timing |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Electrical and Electronic Engineering Computer Science Applications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|