Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Junwei Han Dingwen Zhang Shifeng Wen Lei Guo Tianming Liu Xuelong Li |
| Copyright Year | 2013 |
| Abstract | Saliency detection models aiming to quantitatively predict human eye-attended locations in the visual field have been receiving increasing research interest in recent years. Unlike traditional methods that rely on hand-designed features and contrast inference mechanisms, this paper proposes a novel framework to learn saliency detection models from raw image data using deep networks. The proposed framework mainly consists of two learning stages. At the first learning stage, we develop a stacked denoising autoencoder (SDAE) model to learn robust, representative features from raw image data under an unsupervised manner. The second learning stage aims to jointly learn optimal mechanisms to capture the intrinsic mutual patterns as the feature contrast and to integrate them for final saliency prediction. Given the input of pairs of a center patch and its surrounding patches represented by the features learned at the first stage, a SDAE network is trained under the supervision of eye fixation labels, which achieves both contrast inference and contrast integration simultaneously. Experiments on three publically available eye tracking benchmarks and the comparisons with 16 state-of-the-art approaches demonstrate the effectiveness of the proposed framework. |
| Page Count | 12 |
| File Size | 1688754 |
| Starting Page | 487 |
| Ending Page | 498 |
| File Format | |
| ISSN | 21682267 |
| Volume Number | 46 |
| Issue Number | 2 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2016-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Feature extraction Visualization Computational modeling Data models Noise reduction Image color analysis Robustness stacked denoising autoencoders (SDAEs) Deep networks eye fixation prediction saliency detection |
| Content Type | Text |
| Resource Type | Article |
| Subject | Control and Systems Engineering Information Systems Electrical and Electronic Engineering Human-Computer Interaction Computer Science Applications Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|