Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Kumar, G. Sitaraman, S. Jonghyun Cho Sundaram, V. Joungho Kim Tummala, R.R. |
| Copyright Year | 2011 |
| Abstract | Ultrathin 3-D glass interposers with throughpackage vias at the same pitch as through-silicon vias (TSVs) have been proposed as a simpler and cheaper alternative to the direct 3-D stacking of logic and memory devices. Such 3-D interposers provide wide-I/O channels for high signal bandwidth (BW) between the logic device on one side of the interposer and memory stack on the other side, without the use of complex TSVs in the logic die. However, this configuration introduces power delivery design challenges due to resonance from: 1) the low-loss property of the glass substrate and 2) the parasitic inductance due to additional length from lateral power delivery path. This paper presents for the first time, the design and demonstration of power delivery networks (PDNs) in 30-μm thin, 3-D double-sided glass interposers, by suppressing the noise from mode resonances. The self-impedance of the 3-D glass interposer PDN was simulated using electromagnetic solvers, including printed-wiring-board and chip-level models. The 3-D PDN was compared with that of the 2-D glass packages having fully populated ball grid array connections. The resonance mechanism for each configuration was studied in detail, and the corresponding PDN loop inductances were evaluated. High impedance peaks in addition to the 2-D PDN were observed at high frequencies (near 7.3 GHz) in the 3-D interposer structure due to the increased inductances from lateral power delivery. This paper proposes and evaluates three important resonance suppression techniques based on: 1) 3-D interposer die configuration; 2) the selection and placement of decoupling capacitors; and 3) 3-D interposer package power and ground stack-up. Two-metal and four-metal layer test vehicles were fabricated on 30and 100-μm thick panel-based glass substrates, respectively, to validate the modeling and analysis of the proposed approach. The PDN test structures were characterized up to 20 GHz for plane resonances and network impedances, with good model-to-hardware correlation. The results in this paper suggest that the ultrathin 3-D interposer PDN structure can be effectively designed to meet the target impedance guidelines for high-BW applications, providing a compelling alternative to 3-D-IC stacking with the TSVs. |
| Starting Page | 87 |
| Ending Page | 99 |
| Page Count | 13 |
| File Size | 7002447 |
| File Format | |
| ISSN | 21563950 |
| Volume Number | 6 |
| Issue Number | 1 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2016-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Glass Substrates Impedance Through-silicon vias Silicon Solid modeling Capacitors TSVs. 3-D interposers glass interposers logic memory bandwidth power delivery through-package-vias TSVs |
| Content Type | Text |
| Resource Type | Article |
| Subject | Industrial and Manufacturing Engineering Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|