Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Jiang Zhu Xiaokang Lin Blum, R.S. Yuantao Gu |
Copyright Year | 1991 |
Abstract | The problem of distributed parameter estimation from binary quantized observations is studied when the unquantized observations are corrupted by combined multiplicative and additive Gaussian noise. These results are applicable to sensor networks where the sensors observe a parameter in combined additive and nonadditive noise and to a case where dispersed receivers are employed with analog communication over fading channels where the receivers employ binary quantization before noise-free digital communications to a fusion center. We first discuss the case in which all the quantizers use an identical threshold. The parameter identifiability condition is given, and, surprisingly, it is shown that unless the common threshold is chosen properly and the parameter lies in an open interval, the parameter will not generally be identifiable, in contrast to the additive noise case. The best achievable mean square error (MSE) performance is characterized by deriving the corresponding Cramér-Rao Lower Bound (CRLB). A closed-form expression describing the corresponding maximum likelihood (ML) estimator is presented. The stability of the performance of the ML estimators is improved when a nonidentical threshold strategy is utilized to estimate the unknown parameter. The thresholds are designed by maximizing the minimum asymptotic relative efficiency (ARE) between quantized and unquantized ML estimators. Although the ML estimation problem is nonconvex, it is shown that one can relax the optimization to make it convex. The solution to the relaxed problem is used as an initial solution in a gradient algorithm to solve the original problem. Next, the case where both the variances of the additive noise and multiplicative noise are unknown is studied. The corresponding CRLB is obtained, and the ML estimation problem is transformed to a convex optimization, which can be solved efficiently. Finally, numerical simulations are performed to substantiate the theoretical analysis. |
Sponsorship | IEEE Signal Processing Society |
Starting Page | 4037 |
Ending Page | 4050 |
Page Count | 14 |
File Size | 2797537 |
File Format | |
ISSN | 1053587X |
Volume Number | 63 |
Issue Number | 15 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2015-01-01 |
Publisher Place | U.S.A. |
Access Restriction | One Nation One Subscription (ONOS) |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Maximum likelihood estimation Additive noise Parameter estimation Receivers Wireless sensor networks quantization CRLB multiplicative noise parameter estimation |
Content Type | Text |
Resource Type | Article |
Subject | Signal Processing Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|