Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Acuna, P.C. Leyre, S. Audenaert, J. Meuret, Y. Deconinck, G. Hanselaer, P. |
| Copyright Year | 2009 |
| Abstract | Remote phosphor light-emitting diode (LED) modules could offer advantages over intimate white phosphor converted LEDs in terms of phosphor operation temperature, light extraction efficiency, and angular color uniformity. Existing commercial devices show a large variety with respect to the dimensions of the mixing cavity, which raises a question about the optimization of the topology. A simplified simulation model applying a two-wavelength approach and considering the remote phosphor as one virtual surface to which three bidirectional scattering distribution functions are attributed (respectively, describing the blue-blue, blue-yellow, and yellow-yellow interactions) is developed and validated. This model has been used to analyze the impact of the cylindrical mixing cavity parameters such as the absolute reflectance, the diffuse-to-specular reflectance ratio, and the height of the mixing cavity, as well as the pitch and angular full-width at half-maximum of the LEDs on the extraction efficiency, the yellow-to-blue ratio, and the irradiance uniformity. It can be concluded that in order to increase the efficacy substantially, the recuperation of the backward emission of the converted light can only be increased by avoiding further interaction with the phosphor plate. To this extent, topologies other than cylindrical mixing cavities must be considered. |
| Starting Page | 1 |
| Ending Page | 14 |
| Page Count | 14 |
| File Size | 1693562 |
| File Format | |
| ISSN | 19430655 |
| Volume Number | 7 |
| Issue Number | 5 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Phosphors Light emitting diodes Cavity resonators Optical mixing Geometrical optics Optical scattering scattering light emitting diodes luminescence and fluorescence Light emitting diodes (LEDs) |
| Content Type | Text |
| Resource Type | Article |
| Subject | Atomic and Molecular Physics, and Optics Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|