Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Alvarez-Perez, J.L. |
| Copyright Year | 1980 |
| Abstract | Interferometric synthetic aperture radar (InSAR) is a phase-based radar signal processing technique that has been addressed from a polarimetric point of view since the late 1990s, starting with Cloude and Papathanassiou's foundational work. Polarimeric InSAR (PolInSAR) has consolidated as an active field of research in parallel to non-PolInSAR. Regarding the latter, there have been a number of issues that were discussed in an earlier paper from which some other questions related to Cloude's PolInSAR come out naturally. In particular, they affect the usual understanding of coherence and statistical independence. Coherence involves the behavior of electromagnetic waves in at least a pair of points, and it is crucially related to the statistical independence of scatterers in a complex scene. Although this would seem to allow PolInSAR to overcome the difficulties involving the controversial confusion between statistical independence and polarization as present in PolSAR, Cloude's PolInSAR originally inherited the idea of separating physical contributors to the scattering phenomenon through the use of singular values and vectors. This was an assumption consistent with Cloude's PolSAR postulates that was later set aside. We propose the introduction of a multidimensional coherence tensor that includes PolInSAR's polarimetric interferometry matrix Ω12 as its 2-D case. We show that some important properties of the polarimetric interferometry matrix are incidental to its bidimensionality. Notably, this exceptional behavior in 2-D seems to suggest that the singular value decomposition (SVD) of Ω12 does not provide a physical insight into the scattering problem in the sense of splitting different scattering contributors. It might be argued that Cloude's PolInSAR in its current form does not rely on the SVD of Ω12 but on other underlying optimization schemes. The drawbacks of such ulterior developments and the failure of the maximum coherence separation procedure to be a consistent scheme for surface topography estimation in a two-layer model are discussed in depth in this paper. Nevertheless, turning back to the SVD of Ω12, the use of the singular values of a prewhitened version of Ω12 is consistent with a leading method of characterizing coherence in modern Optics. For this reason, the utility of the SVD of Ω12 as a means of characterizing coherence is analyzed here and extended to higher dimensionalities. Finally, these extensions of the concept of coherence to the multidimensional case are tested and compared with the 2-D case by numerically simulating the scattered electromagnetic field from a rough surface. |
| Sponsorship | IEEE Geoscience and Remote Sensing Society IEEE URSI |
| Starting Page | 1257 |
| Ending Page | 1270 |
| Page Count | 14 |
| File Size | 552447 |
| File Format | |
| ISSN | 01962892 |
| Volume Number | 53 |
| Issue Number | 3 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Coherence Vectors Interferometry Tensile stress Matrix decomposition polarimetric synthetic aperture radar interferometry (PolInSAR) electromagnetic scattering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|