Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Hua Fu Pooi-Yuen Kam |
| Copyright Year | 1963 |
| Abstract | This paper presents the theoretical foundation for time-domain, phase-based estimation of the frequency and phase of a single sinusoid in additive white Gaussian noise (AWGN), analogous to the theoretical foundation provided by Rife and Boorstyn for frequency-domain, Fourier-transform-based estimation. It is shown from the maximum a posteriori probability (MAP) and the maximum likelihood (ML) estimation principles that with the additive observation phase noise (AOPN), due to the AWGN, being described by its a posteriori distribution conditioned on the received signal magnitude, the received signal phase is a sufficient statistic for estimating the single-sinusoid angle parameters. Using a geometric approach, the exact statistical model for the AOPN is derived, where the a posteriori probability density function (pdf) and the corresponding a priori pdf are given by explicit, closed-form expressions that are valid for arbitrary signal-to-noise ratios (SNRs). The a posteriori pdf is Tikhonov, and is of particular interest as it establishes the AOPN model for phase-based frequency/phase MAP/ML estimation in the time domain. It is further illustrated that the results derived can yield various AOPN models as special cases, and the underlying physical insights and interconnections that exist among these models are revealed. It is shown that the model derived by Tretter is an ultimate specialization in the high SNR limit of the AOPN models developed here. For high SNR, the a posteriori Tikhonov pdf can be accurately approximated by a Gaussian distribution, which leads to the best linearized AOPN model. The applications of these AOPN models to the design of linear estimators, including the linear minimum mean square error (LMMSE) estimator, the linear minimum variance estimator, and the LMMSE implementation of the weighted phase averager are presented, and their estimation performances are compared through computer simulations, with the Cramer-Rao lower bound (CRLB) and the Bayesian CRLB as the benchmark. To facilitate estimator design, the a priori statistical models of the frequency and phase are proposed from the information-theoretic perspective, and an improved phase unwrapping algorithm over that given by Fu and Kam is presented. It is shown that by incorporating all the information available in the AOPN, the estimation accuracy can be much improved. |
| Sponsorship | IEEE Information Theory Society |
| Starting Page | 3175 |
| Ending Page | 3188 |
| Page Count | 14 |
| File Size | 3511598 |
| File Format | |
| ISSN | 00189448 |
| Volume Number | 59 |
| Issue Number | 5 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2013-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Signal to noise ratio Approximation methods AWGN Maximum likelihood estimation Mathematical model Frequency estimation Tikhonov pdf AOPN frequency linear estimator phase phase-based time-domain estimation single-sinusoid |
| Content Type | Text |
| Resource Type | Article |
| Subject | Library and Information Sciences Information Systems Computer Science Applications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|