Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Jiann-Jone Chen Chun-Rong Su Grimson, W.E.L. Jun-Lin Liu De-Hui Shiue |
| Copyright Year | 1992 |
| Abstract | Processing images for specific targets on a large scale has to handle various kinds of contents with regular processing steps. To segment objects in one image, we utilized dual multiScalE Graylevel mOrphological open and close recoNstructions (SEGON) to build a background (BG) gray-level variation mesh, which can help to identify BG and object regions. It was developed from a macroscopic perspective on image BG gray levels and implemented using standard procedures, thus robustly dealing with large-scale database images. The image segmentation capability of existing methods can be exploited by the BG mesh to improve object segmentation accuracy. To evaluate the segmentation accuracy, the probability of coherent segmentation labeling, i.e., the normalized probability random index (PRI), between a computer-segmented image and the hand-labeled one is computed for comparisons. Content-based image retrieval (CBIR) was carried out to evaluate the object segmentation capability in dealing with large-scale database images. Retrieval precision-recall (PR) and rank performances, with and without SEGON, were compared. For multi-instance retrieval with shape feature, AdaBoost was used to select salient common feature elements. For color features, the histogram intersection between two scalable HSV descriptors was calculated, and the mean feature vector was used for multi-instance retrieval. The distance measure for color feature can be adapted when both positive and negative queries are provided. The normalized correlation coefficient of features among query samples was computed to integrate the similarity ranks of different features in order to perform multi-instance with multifeature query. Experiments showed that the proposed object segmentation method outperforms others by 21% in the PRI. Performing SEGON-enabled CBIR on large-scale databases also improves on the PR performance reported elsewhere by up to 42% at a recall rate of 0.5. The proposed object segmentation method can be extended to extract other image features, and new feature types can be incorporated into the algorithm to further improve the image retrieval performance. |
| Sponsorship | IEEE Signal Processing Society |
| Page Count | 16 |
| File Size | 2186498 |
| Starting Page | 828 |
| Ending Page | 843 |
| File Format | |
| ISSN | 10577149 |
| Volume Number | 21 |
| Issue Number | 2 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2012-02-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Image segmentation Image reconstruction Object segmentation Databases Shape Image color analysis Stability criteria object segmentation Content-based image retrieval (CBIR) dual multiscale gray-level morphological reconstructions image background (BG) gray-level variation mesh |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Graphics and Computer-Aided Design Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|