Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Blanc, R. Szekely, G. |
| Copyright Year | 1982 |
| Abstract | Shape prediction from sparse observation is of increasing interest in minimally invasive surgery, in particular when the target is not directly visible on images. This can be caused by a limited field-of-view of the imaging device, missing contrast or an insufficient signal-to-noise ratio. In such situations, a statistical shape model can be employed to estimate the location of unseen parts of the organ of interest from the observation and identification of the visible parts. However, the quantification of the reliability of such a prediction can be crucial for patient safety. We present here a framework for the estimation of complete shapes and of the associated uncertainties. This paper formalizes and extends previous work in the area by taking into account and incorporating the major sources of uncertainties, in particular the estimation of pose together with shape parameters, as well as the identification of correspondences between the sparse observation and the model. We evaluate our methodology on a large database of 171 human femurs and synthetic experiments based on a liver model. The experiments show that informative and reliable confidence regions can be estimated by the proposed approach. |
| Sponsorship | IEEE Engineering in Medicine and Biology Society IEEE Nuclear and Plasma Sciences Society IEEE Signal Processing Society IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society |
| Page Count | 11 |
| File Size | 779494 |
| Starting Page | 1300 |
| Ending Page | 1310 |
| File Format | |
| ISSN | 02780062 |
| Volume Number | 31 |
| Issue Number | 6 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2012-06-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Shape Estimation Uncertainty Predictive models Training Measurement Analytical models uncertainty estimation Shape prediction statistical shape models |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electrical and Electronic Engineering Computer Science Applications Radiological and Ultrasound Technology Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|