Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Espinoza Molina, D. Gleich, D. Datcu, M. |
Copyright Year | 1980 |
Abstract | Speckle hinders information in synthetic aperture radar (SAR) images and makes automatic information extraction very difficult. The Bayesian approach allows us to perform the despeckling of an image while preserving its texture and structures. This model-based approach relies on a prior model of the scene. This paper presents an evaluation of two despeckling and texture extraction model-based methods using the two levels of Bayesian inference. The first method uses a Gauss-Markov random field as prior, and the second is based on an auto-binomial model (ABM). Both methods calculate a maximum a posteriori and determine the best model using an evidence maximization algorithm. Our evaluation approach assesses the quality of the image by means of the despeckling and texture extraction qualities. The proposed objective measures are used to quantify the despeckling performances of these methods. The accuracy of modeling and characterization of texture were determined using both supervised and unsupervised classifications, and confusion matrices. Real and simulated SAR data were used during the validation procedure. The results show that both methods enhance the image during the despeckling process. The ABM is superior regarding texture extraction and despeckling for real SAR images. |
Sponsorship | IEEE Geoscience and Remote Sensing Society IEEE URSI |
Starting Page | 2001 |
Ending Page | 2025 |
Page Count | 25 |
File Size | 7209174 |
File Format | |
ISSN | 01962892 |
Volume Number | 50 |
Issue Number | 5 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2012-05-01 |
Publisher Place | U.S.A. |
Access Restriction | One Nation One Subscription (ONOS) |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Bayesian methods Speckle Estimation Data mining Data models Adaptation models Approximation methods texture extraction Auto-binomial model (ABM) Bayesian inference Gauss–Markov random fields (GMRF) parameter estimation speckle reduction synthetic aperture radar (SAR) TerraSAR-X |
Content Type | Text |
Resource Type | Article |
Subject | Earth and Planetary Sciences Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|