Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Bello, P. Nelin, B. |
| Copyright Year | 1956 |
| Abstract | Previous derivations of the influence of fading on the error probabilities of binary data transmission systems have assumed that the fading rate is so slow that fluctuations within a bit may be ignored. This slow fading assumption is removed in the present paper which derives general expressions for the binary error probabilities of incoherent and differentially coherent matched filter receivers employing post-detection diversity combining. In the analysis it is assumed that the transmitted signals occupy a bandwidth much smaller than the coherence bandwidth of the medium so that "flat" fading may be assumed. In addition, it is assumed that the amplitude and phase fluctuations produced by the medium have the same statistical character as those of narrow-band Gaussian noise. The general analytical results are specialized to the cases of frequency shift keying using incoherent detection, and phase shift keying using differentially coherent detection, and to the cases of exponential and Gaussian fading correlation functions. For these special cases, signal-to-noise degradation curves are given as a function of fading bandwidth. The PSK system is degraded more rapidly with increasing fading bandwidth than is the FSK system. Curves are given which show the error probabilities and corresponding fading bandwidths for which the noncoherent FSK and the differentially coherent PSK systems break even. For lower error probabilities or higher fading bandwidths, the FSK system becomes superior to the PSK system in the sense of being able to provide the same error probability with less signal-to-noise ratio. The existence of an irreducible error probability is demonstrated for the incoherent and differentially coherent matched filter receivers. Thus, in general, an increase in transmitted signal power cannot reduce the error probability below a certain value depending upon the fading spectrum and order of diversity. Theoretical curves of irreducible error probability are given for the incoherent FSK and differentially coherent PSK systems. An important result of the analysis is that the shape of the fading spectrum can make a significant difference in the amount of signal-to-noise degradation. The results of the analysis also indicate that care must be exercised in employing a "slow fading" assumption since, if low bit error probabilities are desired, significant degradations in performance can occur even though the fading rate is quite low relative to the data rate. |
| Starting Page | 160 |
| Ending Page | 168 |
| Page Count | 9 |
| File Size | 840684 |
| File Format | |
| ISSN | 00962244 |
| Volume Number | 10 |
| Issue Number | 2 |
| Language | English |
| Publisher Date | 1962-06-01 |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Fading Matched filters Error probability Bandwidth Frequency shift keying Phase shift keying Degradation Diversity reception Fluctuations Signal analysis |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|