Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Karoui, I. Fablet, R. Boucher, J. Augustin, J. |
| Copyright Year | 1992 |
| Abstract | This paper investigates variational region-level criterion for supervised and unsupervised texture-based image segmentation. The focus is given to the demonstration of the effectiveness and robustness of this region-based formulation compared to most common variational approaches. The main contributions of this global criterion are twofold. First, the proposed methods circumvent a major problem related to classical texture based segmentation approaches. Existing methods, even if they use different and various texture features, are mainly stated as the optimization of a criterion evaluating punctual pixel likelihoods or similarity measure computed within a local neighborhood. These approaches require sufficient dissimilarity between the considered texture features. An additional limitation is the choice of the neighborhood size and shape. These two parameters and especially the neighborhood size significantly influence the classification performances: the neighborhood must be large enough to capture texture structures and small enough to guarantee segmentation accuracy. These parameters are often set experimentally. These limitations are mitigated with the proposed variational methods stated at the region-level. It resorts to an energy criterion defined on image where regions are characterized by nonparametric distributions of their responses to a set of filters. In the supervised case, the segmentation algorithm consists in the minimization of a similarity measure between region-level statistics and texture prototypes and a boundary based functional that imposes smoothness and regularity on region boundaries. In the unsupervised case, the data-driven term involves the maximization of the dissimilarity between regions. The proposed similarity measure is generic and permits optimally fusing various types of texture features. It is defined as a weighted sum of Kullback-Leibler divergences between feature distributions. The optimization of the proposed variational criteria is carried out using a level-set formulation. The effectiveness and the robustness of this formulation at region-level, compared to classical active contour methods, are evaluated for various Brodatz and natural images. |
| Sponsorship | IEEE Signal Processing Society |
| Page Count | 11 |
| File Size | 4996941 |
| Starting Page | 3146 |
| Ending Page | 3156 |
| File Format | |
| ISSN | 10577149 |
| Volume Number | 19 |
| Issue Number | 12 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-12-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Image segmentation Level set Histograms Equations Entropy Supervised learning texture similarity measure Active regions level sets nonparametric distributions supervised and unsupervised segmentation |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Graphics and Computer-Aided Design Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|