Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Hochman, A. Leviatan, Y. |
| Copyright Year | 1963 |
| Abstract | The analysis of 2D scattering in the presence of a dielectric half-space by integral-equation formulations involves repeated evaluation of Sommerfeld integrals. Deformation of the contour to the steepest-descent path results in a well-behaved integrand, that can be readily integrated. A well-known drawback of this method is that an analytical expression for the path is available only for evaluation of the reflected fields, but not for the evaluation of the transmitted fields. A simple scheme for numerical determination of the steepest-descent path, valid for both cases, is presented. The computational cost of the numerical determination is comparable to that of evaluating the analytical expression for the steepest-descent path for reflected fields. When necessary, contributions from branch-cut integrals and a second saddle point are taken into account. Certain ranges of the input parameters, which result in integrands that vary rapidly in the neighborhood of the saddle point, require special treatment. Alternative paths and specialized Gaussian quadrature rules for these cases are also proposed. An implementation of the proposed numerically determined steepest-descent path (ND-SDP) method is freely available for download. |
| Sponsorship | IEEE Antennas and Propagation Society |
| Starting Page | 413 |
| Ending Page | 431 |
| Page Count | 19 |
| File Size | 1906737 |
| File Format | |
| ISSN | 0018926X |
| Volume Number | 58 |
| Issue Number | 2 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-02-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Dielectrics Integral equations Electromagnetic scattering Computational efficiency Moment methods Nonhomogeneous media Electromagnetic fields Sommerfeld integrals Green functions integral equations method of moments (MoM) nonhomogeneous media |
| Content Type | Text |
| Resource Type | Article |
| Subject | Condensed Matter Physics Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|