Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Kumar, M.P. Torr, P.H.S. Zisserman, A. |
| Copyright Year | 1979 |
| Abstract | We present a probabilistic method for segmenting instances of a particular object category within an image. Our approach overcomes the deficiencies of previous segmentation techniques based on traditional grid conditional random fields (CRF), namely that 1) they require the user to provide seed pixels for the foreground and the background and 2) they provide a poor prior for specific shapes due to the small neighborhood size of grid CRF. Specifically, we automatically obtain the pose of the object in a given image instead of relying on manual interaction. Furthermore, we employ a probabilistic model which includes shape potentials for the object to incorporate top-down information that is global across the image, in addition to the grid clique potentials which provide the bottom-up information used in previous approaches. The shape potentials are provided by the pose of the object obtained using an object category model. We represent articulated object categories using a novel layered pictorial structures model. Nonarticulated object categories are modeled using a set of exemplars. These object category models have the advantage that they can handle large intraclass shape, appearance, and spatial variation. We develop an efficient method, OBJCUT, to obtain segmentations using our probabilistic framework. Novel aspects of this method include: 1) efficient algorithms for sampling the object category models of our choice and 2) the observation that a sampling-based approximation of the expected log-likelihood of the model can be increased by a single graph cut. Results are presented on several articulated (e.g., animals) and nonarticulated (e.g., fruits) object categories. We provide a favorable comparison of our method with the state of the art in object category specific image segmentation, specifically the methods of Leibe and Schiele and Schoenemann and Cremers. |
| Sponsorship | IEEE Computer Society |
| Page Count | 16 |
| File Size | 3163636 |
| Starting Page | 530 |
| Ending Page | 545 |
| File Format | |
| ISSN | 01628828 |
| Volume Number | 32 |
| Issue Number | 3 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-03-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Image segmentation Shape Object detection Approximation algorithms Sampling methods Animals Computer vision Horses Pain Power system modeling graph cuts. Object category specific segmentation conditional random fields generalized EM |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Artificial Intelligence Computational Theory and Mathematics Computer Vision and Pattern Recognition Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|