Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Ong, J.M.G. Tay, A.A.O. Zhang, X. Kripesh, V. Lim, Y.K. Yeo, D. Chan, K.C. Tan, J.B. Hsia, L.C. Sohn, D.K. |
| Copyright Year | 1999 |
| Abstract | The trend toward finer pitch and higher performance integrated circuit devices has driven the semiconductor industry to incorporate copper and low-k dielectric materials. However, the low-k materials have lower modulus and poorer adhesion compared to the common dielectric materials. Thus, thermomechanical failure is one of the major bottlenecks in the development of Cu/low-k larger-die flip chip packages. This paper describes the optimization of the structural design of Chartered's C65 nm 21 mm times 21 mm die size flip-chip ball grid array package incorporated with fully active and functional ninemetal Cu/low-k layers and 150 mum interconnect pitch. The lowk material used in this paper is nonporous SiCOH with a k value of 2.9. A parametric study using 2-D plane strain finite element analysis was performed to study the effect of various parameters on the reliability of the large-die package in order to arrive at an optimized design. In order to have a simple criterion to predict the reliability of the yet-to-be-built largedie package, reliability tests were carried out on some existing 15 mm times 15 mm die CvJlow-k flip chip packages which were identical to the 21mm times 21mm die package except for the size. The packages were found to pass the reliability tests. 2-D plane strain finite element analyses were then performed on the 15 mm times 15 mm die. The computed delamination stresses at the low-k layer and the strain energy density dissipation per cycle in the critical solder (DeltaW) were then used as a benchmark for the design of a larger flip chip package. The efficacy of the polymer encapsulated dicing lane technology was established. In this paper, the effect of the number of fluorosilicate glass layers, die thickness, substrate thickness, Cu post height, and underfill type on the delamination stresses in the low-k layer and DeltaW were determined. Specimens of the optimized large-die package were then fabricated and subjected to reliability tests. They were all found to pass the reliability tests. From these reliability tests, new benchmark values of the delamination stresses at the low-k layer and DeltaW are obtained, which can be used to aid in the design of large-die Cu/low-k flip chip packages. |
| Sponsorship | IEEE Components, Packaging, and Manufacturing Technology Society |
| Starting Page | 838 |
| Ending Page | 848 |
| Page Count | 11 |
| File Size | 1320036 |
| File Format | |
| ISSN | 15213331 |
| Volume Number | 32 |
| Issue Number | 4 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2009-12-01 |
| Publisher Place | U.S.A. |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Thermomechanical processes Packaging Testing Copper Flip chip Dielectric materials Capacitive sensors Delamination Stress Design optimization solder joint reliability 65 nm Cu/low-$k$ finite element analysis flip chip package large-die |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|