Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Kulkarni, M. Pingali, K. |
| Copyright Year | 1963 |
| Abstract | Memory hierarchy optimizations have been studied by researchers in many areas including compilers, numerical linear algebra, and theoretical computer science. However, the approaches taken by these communities are very different. The compiler community has invested considerable effort in inventing loop transformations like loop permutation and tiling, and in the development of simple analytical models to determine the values of numerical parameters such as tile sizes required by these transformations. Although the performance of compiler-generated code has improved steadily over the years, it is difficult to retarget restructuring compilers to new platforms because of the need to develop analytical models manually for new platforms. The search for performance portability has led to the development of self-optimizing software systems. One approach to self-optimizing software is the generate-and-test approach, which has been used by the dense numerical linear algebra community to produce high- performance BLAS and fast Fourier transform libraries. Another approach to portable memory hierarchy optimization is to use the divide-and-conquer approach to implementing cache- oblivious algorithms. Each step of divide-and-conquer generates problems of smaller size. When the working set of the subproblems fits in some level of the memory hierarchy, that subproblem can be executed without capacity misses at that level. Although all three approaches have been studied extensively, there are few experimental studies that have compared these approaches. How well does the code produced by current self-optimizing systems perform compared to hand-tuned code? Is empirical search essential to the generate-and- test approach or is it possible to use analytical models with platform-specific parameters to reduce the size of the search space? The cache-oblivious approach uses divide-and-conquer to perform approximate blocking; how well does approximate blocking perform compared to precise blocking? This paper addresses such questions for matrix multiplication, which is the most important dense linear algebra kernel. |
| Sponsorship | IEEE Publication |
| Starting Page | 832 |
| Ending Page | 848 |
| Page Count | 17 |
| File Size | 881768 |
| File Format | |
| ISSN | 00189219 |
| Volume Number | 96 |
| Issue Number | 5 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2008-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Linear algebra Analytical models Optimizing compilers Computer science Software systems Software performance Fast Fourier transforms Software libraries tiling Algorithms cache blocking cache memories computer performance linear algebra matrix multiplication memory architecture |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Science Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|