Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Mohanty, P. Sarkar, S. Kasturi, R. Phillips, P.J. |
| Copyright Year | 2005 |
| Abstract | We present a theory for constructing linear subspace approximations to face-recognition algorithms and empirically demonstrate that a surprisingly diverse set of face-recognition approaches can be approximated well by using a linear model. A linear model, built using a training set of face images, is specified in terms of a linear subspace spanned by, possibly nonorthogonal vectors. We divide the linear transformation used to project face images into this linear subspace into two parts: 1) a rigid transformation obtained through principal component analysis, followed by a nonrigid, affine transformation. The construction of the affine subspace involves embedding of a training set of face images constrained by the distances between them, as computed by the face-recognition algorithm being approximated. We accomplish this embedding by iterative majorization, initialized by classical MDS. Any new face image is projected into this embedded space using an affine transformation. We empirically demonstrate the adequacy of the linear model using six different face-recognition algorithms, spanning template-based and feature-based approaches, with a complete separation of the training and test sets. A subset of the face-recognition grand challenge training set is used to model the algorithms and the performance of the proposed modeling scheme is evaluated on the facial recognition technology (FERET) data set. The experimental results show that the average error in modeling for six algorithms is 6.3% at 0.001 false acceptance rate for the FERET fafb probe set which has 1195 subjects, the most among all of the FERET experiments. The built subspace approximation not only matches the recognition rate for the original approach, but the local manifold structure, as measured by the similarity of identity of nearest neighbors, is also modeled well. We found, on average, 87% similarity of the local neighborhood. We also demonstrate the usefulness of the linear model for algorithm-dependent indexing of face databases and find that it results in more than 20 times reduction in face comparisons for Bayesian, elastic bunch graph matching, and one proprietary algorithm. |
| Sponsorship | IEEE Signal Processing Society |
| Starting Page | 734 |
| Ending Page | 748 |
| Page Count | 15 |
| File Size | 2176104 |
| File Format | |
| ISSN | 15566013 |
| Volume Number | 3 |
| Issue Number | 4 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2008-12-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Face recognition Approximation algorithms Iterative algorithms Linear approximation Vectors Principal component analysis Subspace constraints Embedded computing Testing Probes template reconstruction Affine approximation error in indexing face recognition indexing indexing face templates linear modeling local manifold structure multidimensional scaling security and privacy subspace approximation |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Networks and Communications Safety, Risk, Reliability and Quality |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|