Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Graves, K.E. Nagarajah, R. |
| Copyright Year | 1990 |
| Abstract | Uncertainty arises in classification problems when the input pattern is not perfect or measurement error is unavoidable. In many applications, it would be beneficial to obtain an estimate of the uncertainty associated with a new observation and its membership within a particular class. Although statistical classification techniques base decision boundaries according to the probability distributions of the patterns belonging to each class, they are poor at supplying uncertainty information for new observations. Previous research has documented a multiarchitecture, monotonic function neural network model for the representation of uncertainty associated with a new observation for two-class classification. This paper proposes a modification to the monotonic function model to estimate the uncertainty associated with a new observation for multiclass classification. The model, therefore, overcomes a limitation of traditional classifiers that base decisions on sharp classification boundaries. As such, it is believed that this method will have advantages for applications such as biometric recognition in which the estimation of classification uncertainty is an important issue. This approach is based on the transformation of the input pattern vector relative to each classification class. Separate, monotonic, single-output neural networks are then used to represent the "degree-of-similarity" between each input pattern vector and each class. An algorithm for the implementation of this approach is proposed and tested with publicly available face-recognition data sets. The results indicate that the suggested approach provides similar classification performance to conventional principle component analysis (PCA) and linear discriminant analysis (LDA) techniques for multiclass pattern recognition problems as well as providing uncertainty information caused by misclassification |
| Sponsorship | IEEE Computational Intelligence Society |
| Page Count | 13 |
| File Size | 1783188 |
| Starting Page | 128 |
| Ending Page | 140 |
| File Format | |
| ISSN | 10459227 |
| Volume Number | 18 |
| Issue Number | 1 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2007-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Uncertainty Neural networks Linear discriminant analysis Measurement errors Probability distribution Biometrics Vectors Testing Information analysis Pattern analysis uncertainty estimation Monotonicity neural-network possibility theory |
| Content Type | Text |
| Resource Type | Article |
| Subject | Artificial Intelligence Computer Networks and Communications Computer Science Applications Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|