Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Abramovich, Y.I. Spencer, N.K. Gorokhov, A.Y. |
| Copyright Year | 1965 |
| Abstract | The well-known general problem of signal detection in background interference is addressed for situations where a certain statistical description of the interference is unavailable, but is replaced by the observation of some secondary (training) data that contains only the interference. For the broad class of interferences that have a large separation between signal-and noise-subspace eigenvalues, we demonstrate that adaptive detectors which use a diagonally loaded sample covariance matrix or a fast maximum likelihood (FML) estimate have significantly better detection performance than the traditional generalized likelihood ratio test (GLRT) and adaptive matched filter (AMI') detection techniques, which use a maximum likelihood (ML) covariance matrix estimate. To devise a theoretical framework that can generate similarly efficient detectors, two major modifications are proposed for Kelly's traditional GLRT and AMF detection techniques. First, a two-set GLRT decision rule takes advantage of an a priori assignment of different functions to the primary and secondary data, unlike the Kelly rule that was derived without this. Second, instead of ML estimates of the missing parameters in both GLRT and AMF detectors, we adopt expected likelihood (EL) estimates that have a likelihood within the range of most probable values generated by the actual interference covariance matrix. A Gaussian model of fluctuating target signal and interference is used in this study. We demonstrate that, even under the most favorable loaded sample-matrix inversion (LSMI) conditions, the theoretically derived EL-GLRT and FL-AMF techniques (where the loading factor is chosen from the training data using the EL matching principle) gives the same detection performance as the loaded AMF technique with a proper a priori data-invariant loading factor. For the least favorable conditions, our EL-AMF method is still superior to the standard AMF detector, and may be interpreted as an intelligent (data-dependent) method for selecting the loading factor. |
| File Size | 3857898 |
| File Format | |
| ISSN | 00189251 |
| Volume Number | 43 |
| Issue Number | 3 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2007-07-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Interference Detectors Maximum likelihood detection Maximum likelihood estimation Adaptive signal detection Covariance matrix Signal detection Signal to noise ratio Eigenvalues and eigenfunctions Testing |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electrical and Electronic Engineering Aerospace Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|