Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Berengere Aubert-Broche Griffin, M. Pike, G.B. Evans, A.C. Collins, D.L. |
| Copyright Year | 1982 |
| Abstract | Simulations provide a way of generating data where ground truth is known, enabling quantitative testing of image processing methods. In this paper, we present the construction of 20 realistic digital brain phantoms that can be used to simulate medical imaging data. The phantoms are made from 20 normal adults to take into account intersubject anatomical variabilities. Each digital brain phantom was created by registering and averaging four T1, T2, and proton density (PD)-weighted magnetic resonance imaging (MRI) scans from each subject. A fuzzy minimum distance classification was used to classify voxel intensities from T1, T2, and PD average volumes into grey-matter, white matter, cerebro-spinal fluid, and fat. Automatically generated mask volumes were required to separate brain from nonbrain structures and ten fuzzy tissue volumes were created: grey matter, white matter, cerebro-spinal fluid, skull, marrow within the bone, dura, fat, tissue around the fat, muscles, and skin/muscles. A fuzzy vessel class was also obtained from the segmentation of the magnetic resonance angiography scan of the subject. These eleven fuzzy volumes that describe the spatial distribution of anatomical tissues define the digital phantom, where voxel intensity is proportional to the fraction of tissue within the voxel. These fuzzy volumes can be used to drive simulators for different modalities including MRI, PET, or SPECT. These phantoms were used to construct 20 simulated T1-weighted MR scans. To evaluate the realism of these simulations, we propose two approaches to compare them to real data acquired with the same acquisition parameters. The first approach consists of comparing the intensities within the segmented classes in both real and simulated data. In the second approach, a whole brain voxel-wise comparison between simulations and real T1-weighted data is performed. The first comparison underlines that segmented classes appear to properly represent the anatomy on average, and that inside these classes, the simulated and real intensity values are quite similar. The second comparison enables the study of the regional variations with no a priori class. The experiments demonstrate that these variations are small when real data are corrected for intensity nonuniformity |
| Sponsorship | IEEE Engineering in Medicine and Biology Society IEEE Nuclear and Plasma Sciences Society IEEE Signal Processing Society IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society |
| Page Count | 7 |
| File Size | 868549 |
| Starting Page | 1410 |
| Ending Page | 1416 |
| File Format | |
| ISSN | 02780062 |
| Volume Number | 25 |
| Issue Number | 11 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2006-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Imaging phantoms Brain modeling Magnetic resonance imaging Medical simulation Muscles Testing Image processing Biomedical imaging Protons Skull validation Brain digital phantom magnetic resonance imaging (MRI) simulation |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electrical and Electronic Engineering Computer Science Applications Radiological and Ultrasound Technology Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|