Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Michailovich, O.V. Adam, D. |
| Copyright Year | 1982 |
| Abstract | The finite frequency bandwidth of ultrasound transducers and the nonnegligible width of transmitted acoustic beams are the most significant factors that limit the resolution of medical ultrasound imaging. Consequently, in order to recover diagnostically important image details, obscured due to the resolution limitations, an image restoration procedure should be applied. The present study addresses the problem of ultrasound image restoration by means of the blind-deconvolution techniques. Given an acquired ultrasound image, algorithms of this kind perform either concurrent or successive estimation of the point-spread function (PSF) of the imaging system and the original image. A blind-deconvolution algorithm is proposed, in which the PSF is recovered as a preliminary stage of the restoration problem. As the accuracy of this estimation affects all the following stages of the image restoration, it is considered as the most fundamental and important problem. The contribution of the present study is twofold. First, it introduces a novel approach to the problem of estimating the PSF, which is based on a generalization of several fundamental concepts of the homomorphic deconvolution. It is shown that a useful estimate of the spectrum of the PSF can be obtained by applying a proper smoothing operator to both log-magnitude and phase of the spectra of acquired radio-frequency (RF) images. It is demonstrated that the proposed approach performs considerably better than the existing homomorphic (cepstrum-based) deconvolution methods. Second, the study shows that given a reliable estimate of the PSF, it is possible to deconvolve it out of the RF-image and obtain an estimate of the true tissue reflectivity function, which is relatively independent of the properties of the imaging system. The deconvolution was performed using the maximum a-posteriori (MAP) estimation framework for a number of statistical priors assumed for the reflectivity function. It is shown in a series of in vivo experiments that reconstructions based on the priors, which tend to emphasize the "sparseness" of the tissue structure, result in solutions of higher resolution and contrast. |
| Sponsorship | IEEE Engineering in Medicine and Biology Society IEEE Nuclear and Plasma Sciences Society IEEE Signal Processing Society IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society |
| Page Count | 19 |
| File Size | 2885713 |
| Starting Page | 86 |
| Ending Page | 104 |
| File Format | |
| ISSN | 02780062 |
| Volume Number | 24 |
| Issue Number | 1 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2005-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Deconvolution Ultrasonic imaging Image restoration Biomedical imaging Medical diagnostic imaging Image resolution Radio frequency Reflectivity Bandwidth Biomedical transducers wavelet transform Blind deconvolution de-noising ultrasound |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electrical and Electronic Engineering Computer Science Applications Radiological and Ultrasound Technology Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|