Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Camps-Valls, G. Bruzzone, L. |
| Copyright Year | 1980 |
| Abstract | This paper presents the framework of kernel-based methods in the context of hyperspectral image classification, illustrating from a general viewpoint the main characteristics of different kernel-based approaches and analyzing their properties in the hyperspectral domain. In particular, we assess performance of regularized radial basis function neural networks (Reg-RBFNN), standard support vector machines (SVMs), kernel Fisher discriminant (KFD) analysis, and regularized AdaBoost (Reg-AB). The novelty of this work consists in: 1) introducing Reg-RBFNN and Reg-AB for hyperspectral image classification; 2) comparing kernel-based methods by taking into account the peculiarities of hyperspectral images; and 3) clarifying their theoretical relationships. To these purposes, we focus on the accuracy of methods when working in noisy environments, high input dimension, and limited training sets. In addition, some other important issues are discussed, such as the sparsity of the solutions, the computational burden, and the capability of the methods to provide outputs that can be directly interpreted as probabilities. |
| Sponsorship | IEEE Geoscience and Remote Sensing Society IEEE URSI |
| Starting Page | 1351 |
| Ending Page | 1362 |
| Page Count | 12 |
| File Size | 620800 |
| File Format | |
| ISSN | 01962892 |
| Volume Number | 43 |
| Issue Number | 6 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2005-06-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Hyperspectral imaging Image classification Kernel Hyperspectral sensors Radial basis function networks Support vector machines Support vector machine classification Image analysis Robustness Remote sensing support vector machines AdaBoost feature space hyperspectral classification kernel-based methods kernel Fisher discriminant analysis radial basis function neural networks regularization |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|