Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Marzano, F.S. Vulpiani, G. Picciotti, E. |
| Copyright Year | 1980 |
| Abstract | Operating a meteorological radar is generally a challenging task when in presence of a significant beam blockage as in complex orography. Apart from enhanced ground clutter, mountainous obstructions of the radar beam can significantly reduce the radar visibility and, thus, its monitoring capabilities. Self-consistent adaptive techniques to reconstruct vertical profiles of reflectivity (VPR) and near-surface rain-rate fields from high-elevation reflectivity bins are here proposed, compared, and tested for ranges up to 60 km. The methodology is based on statistical estimators trained by a large reflectivity volumetric datasets, classified into stratiform and convective rain regimes and resampled onto a uniform Cartesian grid by means of a modified Cressman technique. For what concerns reflectivity vertical profiles, two methods, respectively named statistical nonlinear reconstruction (NSR) and neural network reconstruction (NNR), are considered. The NSR method is based on the principal component analysis, applied to the radar dataset, in order to extract significant reflectivity-profile variance. A retrieval technique, based on a nonlinear multiple regression scheme, is then used to infer near-surface reflectivity from available high-altitude echoes at a given range. The NNR is based on a three-layer artificial neural network trained by means a feedforward backpropagation algorithm. For what concerns the near-surface rain retrieval, besides a power-law reflectivity-rain-rate (ZR) approach, a three-layer neural network technique is also set up in order to estimate surface rain rate from reconstructed VPR. The proposed reconstruction techniques are here illustrated by using volumetric data acquired by the C-band Doppler single-polarization radar, operated in L'Aquila, Italy. A case study, related to a rainfall event that occurred during fall 2000, is discussed. Using a test area within 60 km from the radar site and simulating the presence of beam obstructions, a comparison of NSR and NNR with conventional area average reconstruction techniques shows that the percentage improvement of both NSR and NNR approaches is significant, both for the error bias (by 30% to more than 50%, depending on altitude) and variance (by 10% to more than 20%). A sensitivity test indicates that the VPR reconstruction procedure is fairly robust to missing data, especially in terms of error bias. The comparison of estimated radar rainfall with rain gauge data measurement is also illustrated. The mean field bias closer to its optimal value and an error variance much smaller is obtained when neural network techniques are applied than with conventional ZR methods for both techniques of reconstruction. With respect to the latter, the obtained improvement is more than 40% in terms of root mean square error and is comparable when estimating near-surface rain rate using either NSR or NNR methods to reconstruct the reflectivity vertical profiles. Limitations, potential, and future developments of the proposed adaptive reconstruction techniques are finally discussed. |
| Sponsorship | IEEE Geoscience and Remote Sensing Society IEEE URSI |
| Starting Page | 1033 |
| Ending Page | 1046 |
| Page Count | 14 |
| File Size | 908712 |
| File Format | |
| ISSN | 01962892 |
| Volume Number | 42 |
| Issue Number | 5 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2004-05-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Rain Reflectivity Meteorological radar Radar clutter Neural networks Artificial neural networks Zirconium Doppler radar Testing Monitoring |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|