Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Slone, R.D. Lee, R. Jin-Fa Lee |
| Copyright Year | 1963 |
| Abstract | The frequency-domain finite-element method (FEM) results in matrix equations that have polynomial dependence on the frequency of excitation. For a wide-band fast frequency sweep technique based on a moment-matching model order reduction (MORe) process, researchers generally take one of two approaches. The first is to linearize the polynomial dependence (which will either limit the bandwidth of accuracy or require the introduction of extra degrees of freedom) and then use a well-conditioned Krylov subspace technique. The second approach is to work directly with the polynomial matrix equation and use one of the available, but ill-conditioned, asymptotic waveform evaluation (AWE) methods. For large-scale FEM simulations, introducing extra degrees of freedom, and therefore increasing the length of the MORe vectors and the amount of memory required, is not desirable; therefore, the first approach is not alluring. On the other hand, an ill-conditioned AWE process is unattractive. This paper presents a novel MORe technique for polynomial matrix equations that circumvents these problematic issues. First, this novel process does not require any additional unknowns. Second, this process is well-conditioned. Along with the presentation of the novel algorithm, which is called well-conditioned AWE (WCAWE), numerical examples modeled using the FEM are given to illustrate its accuracy. |
| Sponsorship | IEEE Antennas and Propagation Society |
| Starting Page | 2442 |
| Ending Page | 2447 |
| Page Count | 6 |
| File Size | 329251 |
| File Format | |
| ISSN | 0018926X |
| Volume Number | 51 |
| Issue Number | 9 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2003-09-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Finite element methods Polynomials Frequency Equations Large-scale systems Electromagnetic modeling Laboratories Wideband Bandwidth Numerical models |
| Content Type | Text |
| Resource Type | Article |
| Subject | Condensed Matter Physics Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|