Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Schmidt, R. |
| Copyright Year | 1965 |
| Abstract | An array of n sensors at known locations receives the signal from an emitter whose location is desired. By measuring the time differences of arrival (TDOAs) between pairs of sensors, the range differences (RDs) are available and it becomes possible to compute the emitter location. Traditionally geometric solutions have been based on intersections of hyperbolic lines of position (LOPs). Each measured TDOA provides one hyperbolic LOP. In the absence of measurement noise, the RDs taken around any closed circuit of sensors add to zero. A bivector is introduced from exterior algebra such that when noise is present, the measured bivector of RDs is generally infeasible in that there does not correspond any actual emitter position exhibiting them. A circuital sum trivector is also introduced to represent the infeasibility; a null trivector implies a feasible RD bivector. A 2-step RD Emitter Location algorithm is proposed which exploits this implicit structure. Given the observed noisy RD bivector /spl Delta/, (1) calculate the nearest feasible RD bivector /spl Delta//spl circ/, and (2) calculate the nearest point to the (/sub 3//sup n/) planes of position, one for each of the triads of elements of /spl Delta//spl circ/. Both algorithmic steps are least squares (LS) and finite. Numerical comparisons in simulation show a substantial improvement in location error variances. |
| Starting Page | 234 |
| Ending Page | 242 |
| Page Count | 9 |
| File Size | 151751 |
| File Format | |
| ISSN | 00189251 |
| Volume Number | 32 |
| Issue Number | 1 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 1996-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Least squares methods Sensor arrays Circuit noise Vectors Time measurement Noise measurement Position measurement Iterative algorithms Linear algebra Numerical simulation |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electrical and Electronic Engineering Aerospace Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|