Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Mingyue Ji Caire, G. Molisch, A.F. |
| Copyright Year | 1983 |
| Abstract | As wireless video is the fastest growing form of data traffic, methods for spectrally efficient on-demand wireless video streaming are essential to both service providers and users. A key property of video on-demand is the asynchronous content reuse, such that a few popular files account for a large part of the traffic but are viewed by users at different times. Caching of content on wireless devices in conjunction with device-to-device (D2D) communications allows to exploit this property, and provide a network throughput that is significantly in excess of both the conventional approach of unicasting from cellular base stations and the traditional D2D networks for “regular” data traffic. This paper presents in a tutorial and concise form some recent results on the throughput scaling laws of wireless networks with caching and asynchronous content reuse, contrasting the D2D approach with other alternative approaches such as conventional unicasting, harmonic broadcasting, and a novel coded multicasting approach based on caching in the user devices and network-coded transmission from the cellular base station only. Somehow surprisingly, the D2D scheme with spatial reuse and simple decentralized random caching achieves the same near-optimal throughput scaling law as coded multicasting. Both schemes achieve an unbounded throughput gain (in terms of scaling law) with respect to conventional unicasting and harmonic broadcasting, in the relevant regime where the number of video files in the library is smaller than the total size of the distributed cache capacity in the network. To better understand the relative merits of these competing approaches, we consider a holistic D2D system design incorporating traditional microwave (2 GHz) and millimeter-wave (mm-wave) D2D links; the direct connections to the base station can be used to provide those rare video requests that cannot be found in local caches. We provide extensive simulation results under a variety of system settings and compare our scheme with the systems that exploit transmission from the base station only. We show that, also in realistic conditions and nonasymptotic regimes, the proposed D2D approach offers very significant throughput gains. |
| Starting Page | 176 |
| Ending Page | 189 |
| Page Count | 14 |
| File Size | 1281809 |
| File Format | |
| ISSN | 07338716 |
| Volume Number | 34 |
| Issue Number | 1 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2016-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Streaming media Throughput Base stations Wireless communication Libraries Protocols Interference System Design Device-to-Device Communication Millimeter- Wave Communication Wireless Caching Networks Throughput- Outage Tradeoff system design Device-to-device communication millimeter-wave communication wireless caching networks throughput-outage tradeoff |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Networks and Communications Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|