Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Yuhua Qian Hang Xu Jiye Liang Bing Liu Jieting Wang |
| Copyright Year | 1989 |
| Abstract | Ordinal classification with a monotonicity constraint is a kind of classification tasks, in which the objects with better attribute values should not be assigned to a worse decision class. Several learning algorithms have been proposed to handle this kind of tasks in recent years. The rank entropy-based monotonic decision tree is very representative thanks to its better robustness and generalization. Ensemble learning is an effective strategy to significantly improve the generalization ability of machine learning systems. The objective of this work is to develop a method of fusing monotonic decision trees. In order to achieve this goal, we take two factors into account: attribute reduction and fusing principle. Through introducing variable dominance rough sets, we firstly propose an attribute reduction approach with rank-preservation for learning base classifiers, which can effectively avoid overfitting and improve classification performance. Then, we establish a fusing principe based on maximal probability through combining the base classifiers, which is used to further improve generalization ability of the learning system. The experimental analysis shows that the proposed fusing method can significantly improve classification performance of the learning system constructed by monotonic decision trees. |
| Sponsorship | IEEE IEEE Comput. Soc. Tech. Committee on Data Eng IEEE Computer Society |
| Starting Page | 2717 |
| Ending Page | 2728 |
| Page Count | 12 |
| File Size | 999143 |
| File Format | |
| ISSN | 10414347 |
| Volume Number | 27 |
| Issue Number | 10 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-10-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Decision trees Rough sets Entropy Robustness Bismuth Algorithm design and analysis Noise measurement ensemble learning Monotonic classification rough sets attribute reduction decision tree |
| Content Type | Text |
| Resource Type | Article |
| Subject | Information Systems Computational Theory and Mathematics Computer Science Applications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|