Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Yingquan Wu |
| Copyright Year | 1972 |
| Abstract | In this paper, we devise new scalable decoder architectures for Reed-Solomon (RS) codes, comprising three parts: error-only decoding, error-erasure decoding, and their decoding for singly extended RS codes. New error-only decoders are devised through algorithmic transformations of the inversionless Berlekamp-Massey algorithm (IBMA). We first generalize the Horiguchi-Koetter formula to evaluate error magnitudes using the error locator polynomial Λ(x) and the auxiliary polynomial B(x) produced by IBMA, which effectively eliminates the computation of error evaluator polynomial. We next devise an enhanced parallel inversionless Berlekamp-Massey algorithm (ePIBMA) that effectively takes advantage of the generalized Horiguchi-Koetter formula. The derivative ePIBMA architecture requires only 2t + 1 (t denotes the error correction capability) systolic cells, in contrast with 3t or more cells of the existing regular architectures based on IBMA or the Euclidean algorithm. Moreover, it may literally function as a linear-feedback-shift-register encoder. New error-erasure decoders are devised through algorithmic transformations of the inversionless Blahut algorithm (IBA). The proposed split parallel inversionless Blahut algorithm (SPIBA) yields merely 2t + 1 systolic cells, which is the same number as the error-only decoder ePIBMA. The task is partitioned into two separate steps, computing the complementary errorerasure evaluator polynomial followed by computing error-erasure locator polynomial, both utilizing SPIBA. Surprisingly, it has exactly the same number of cells and literally the same complexity and throughput as the proposed error-only decoder architecture ePIBMA; it employs 33% less hardware and at the same time achieves more than twice faster throughput, than the serial architecture IBA. we further propose a unified parallel inversionless Blahut algorithm (UPIBA) by incorporating the key virtues of the error-only decoder ePIBMA into SPIBA. The complexity and throughput of the rderivative UPIBA architecture are literally the same as ePIBMA and SPIBA, while performing almost equally efficiently as ePIBMA on error-only decoding and as SPIBA on error-erasure decoding. UPIBA also inherits the dynamic power saving feature of ePIBMA and SPIBA. Indeed, UPIBA renders highly attractive for on-the-fly implementation of error-erasure decoding. We finally demonstrate that the proposed decoders, i.e., ePIBMA, SPIBA, and UPIBA, can be magically migrated to decode singly extended RS codes, with negligible add-ons, except that an extra multiplexer is added to their critical paths. To the author's best knowledge, this is the first time that a high-throughput decoder for singly extended RS codes is explored. |
| Starting Page | 2741 |
| Ending Page | 2761 |
| Page Count | 21 |
| File Size | 920541 |
| File Format | |
| ISSN | 00906778 |
| Volume Number | 63 |
| Issue Number | 8 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Polynomials Decoding Computer architecture Heuristic algorithms Complexity theory Delays Hardware unified decoder Reed–Solomon codes singly extended Reed–Solomon codes inversionless Berlekamp-Massey algorithm inversionless Blahut algorithm Horiguchi-Koetter formula high-throughput decoder architecture |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|