Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Barbarossa, S. Sardellitti, S. Di Lorenzo, P. |
| Copyright Year | 1991 |
| Abstract | Current estimates of mobile data traffic in the years to come foresee a 1,000 increase of mobile data traffic in 2020 with respect to 2010, or, equivalently, a doubling of mobile data traffic every year. This unprecedented growth demands a significant increase of wireless network capacity. Even if the current evolution of fourth-generation (4G) systems and, in particular, the advancements of the long-term evolution (LTE) standardization process foresees a significant capacity improvement with respect to third-generation (3G) systems, the European Telecommunications Standards Institute (ETSI) has established a roadmap toward the fifth-generation (5G) system, with the aim of deploying a commercial system by the year 2020 [1]. The European Project named ?Mobile and Wireless Communications Enablers for the 2020 Information Society? (METIS), launched in 2012, represents one of the first international and large-scale research projects on fifth generation (5G) [2]. In parallel with this unparalleled growth of data traffic, our everyday life experience shows an increasing habit to run a plethora of applications specifically devised for mobile devices, (smartphones, tablets, laptops)for entertainment, health care, business, social networking, traveling, news, etc. However, the spectacular growth in wireless traffic generated by this lifestyle is not matched with a parallel improvement on mobile handsets? batteries, whose lifetime is not improving at the same pace [3]. This determines a widening gap between the energy required to run sophisticated applications and the energy available on the mobile handset. A possible way to overcome this obstacle is to enable the mobile devices, whenever possible and convenient, to offload their most energy-consuming tasks to nearby fixed servers. This strategy has been studied for a long time and is reported in the literature under different names, such as cyberforaging [4] or computation offloading [5], [6]. In recent years, a strong impulse to computation offloading has come through cloud computing (CC), which enables the users to utilize resources on demand. The resources made available by a cloud service provider are: 1) infrastructures, such as network devices, storage, servers, etc., 2) platforms, such as operating systems, offering an integrated environment for developing and testing custom applications, and 3) software, in the form of application programs. These three kinds of services are labeled, respectively, as infrastructure as a service, platform as a service, and software as a service. In particular, one of the key features of CC is virtualization, which makes it possible to run multiple operating systems and multiple applications over the same machine (or set of machines), while guaranteeing isolation and protection of the programs and their data. Through virtualization, the number of virtual machines (VMs) can scale on ?demand, thus improving the overall system computational efficiency. Mobile CC (MCC) is a specific case of CC where the user accesses the cloud services through a mobile handset [5]. The major limitations of today?s MCC are the energy consumption associated to the radio access and the latency experienced in reaching the cloud provider through a wide area network (WAN). Mobile users located at the edge of macrocellular networks are particularly disadvantaged in terms of power consumption and, furthermore, it is very difficult to control latency over a WAN. As pointed out in [7]?[9], humans are acutely sensitive to delay and jitter: as latency increases, interactive response suffers. Since the interaction times foreseen in 5G systems, in particular in the so-called tactile Internet [10], are quite small (in the order of milliseconds), a strict latency control must be somehow incorporated in near future MCC. Meeting this constraint requires a deep ?rethinking of the overall service chain, from the physical layer up to virtualization. |
| Starting Page | 45 |
| Ending Page | 55 |
| Page Count | 11 |
| File Size | 1655595 |
| File Format | |
| ISSN | 10535888 |
| Volume Number | 31 |
| Issue Number | 6 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2014-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Mobile communication Mobile handsets Energy consumption Base stations 5G mobile communication Wireless communication Next generation networking Telecommunication traffic Cellular networks Wireless cellular networks |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Signal Processing Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|