Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Thilina, K.M. Kae Won Choi Saquib, N. Hossain, E. |
| Copyright Year | 1983 |
| Abstract | We propose novel cooperative spectrum sensing (CSS) algorithms for cognitive radio (CR) networks based on machine learning techniques which are used for pattern classification. In this regard, unsupervised (e.g., K-means clustering and Gaussian mixture model (GMM)) and supervised (e.g., support vector machine (SVM) and weighted K-nearest-neighbor (KNN)) learning-based classification techniques are implemented for CSS. For a radio channel, the vector of the energy levels estimated at CR devices is treated as a feature vector and fed into a classifier to decide whether the channel is available or not. The classifier categorizes each feature vector into either of the two classes, namely, the "channel available class" and the "channel unavailable class". Prior to the online classification, the classifier needs to go through a training phase. For classification, the K-means clustering algorithm partitions the training feature vectors into K clusters, where each cluster corresponds to a combined state of primary users (PUs) and then the classifier determines the class the test energy vector belongs to. The GMM obtains a mixture of Gaussian density functions that well describes the training feature vectors. In the case of the SVM, the support vectors (i.e., a subset of training vectors which fully specify the decision function) are obtained by maximizing the margin between the separating hyperplane and the training feature vectors. Furthermore, the weighted KNN classification technique is proposed for CSS for which the weight of each feature vector is calculated by evaluating the area under the receiver operating characteristic (ROC) curve of that feature vector. The performance of each classification technique is quantified in terms of the average training time, the sample classification delay, and the ROC curve. Our comparative results clearly reveal that the proposed algorithms outperform the existing state-of-the-art CSS techniques. |
| Starting Page | 2209 |
| Ending Page | 2221 |
| Page Count | 13 |
| File Size | 1669263 |
| File Format | |
| ISSN | 07338716 |
| Volume Number | 31 |
| Issue Number | 11 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2013-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Vectors Training Cascading style sheets Energy states Sensors Availability Support vector machines primary user detection Cognitive radio cooperative spectrum sensing K-means clustering GMM support vector machine (SVM) K-nearest-neighbor |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Networks and Communications Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|