Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Niazmardi, S. Homayouni, S. Safari, A. |
| Copyright Year | 2008 |
| Abstract | Unsupervised classification approaches, also known as “clustering algorithms”, can be considered a solution to problems associated with the supervised classification of remotely sensed image data. The most important of these problems with respect to statistical classification algorithms is the lack of enough high quality training data and high dimensionality of hyperspectral data. In this paper, an improved clustering framework is developed and evaluated as a resolution to these problems. The proposed method enhances the Fuzzy C-Means (FCM) algorithm by using the Support Vector Domain Description (SVDD). The proposed algorithm operates in a similar manner as the FCM for the clustering and labeling of data vectors. However, for estimation of the cluster centers, the SVDD encircles the corresponding members and estimates the center of a containing sphere. By doing so, the effects of noise and outliers on the cluster centers are reduced, and more specifically, higher classification accuracy can be obtained. In spite of this advantage, there are two sets of parameters, namely, the SVDD's and FCM's parameters, both of which affect the performance of the proposed algorithm. Accordingly, the effects of these parameters and their optimum values have been evaluated as well. The evaluations of the results of experiments show that the proposed algorithm, due to the use of the SVDD algorithm, is more efficient than other clustering algorithms. |
| Starting Page | 831 |
| Ending Page | 839 |
| Page Count | 9 |
| File Size | 1029215 |
| File Format | |
| ISSN | 19391404 |
| Volume Number | 6 |
| Issue Number | 2 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2013-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Clustering algorithms Kernel Hyperspectral imaging Support vector machines Partitioning algorithms Equations SVDD Clustering FCM hyperspectral data kernel function |
| Content Type | Text |
| Resource Type | Article |
| Subject | Atmospheric Science Computers in Earth Sciences |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|