Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Mohan, P. Shekhar, S. Shine, J.A. Rogers, J.P. |
| Copyright Year | 1989 |
| Abstract | Given a collection of Boolean spatiotemporal (ST) event-types, the cascading spatiotemporal pattern (CSTP) discovery process finds partially ordered subsets of these event-types whose instances are located together and occur serially. For example, analysis of crime data sets may reveal frequent occurrence of misdemeanors and drunk driving after and near bar closings on weekends, as well as after and near large gatherings such as football games. Discovering CSTPs from ST data sets is important for application domains such as public safety (e.g., identifying crime attractors and generators) and natural disaster planning, (e.g., preparing for hurricanes). However, CSTP discovery presents multiple challenges; three important ones are 1) the exponential cardinality of candidate patterns with respect to the number of event types, 2) computationally complex ST neighborhood enumeration required to evaluate the interest measure and 3) the difficulty of balancing computational complexity and statistical interpretation. Current approaches for ST data mining focus on mining totally ordered sequences or unordered subsets. In contrast, our recent work explores partially ordered patterns. Recently, we represented CSTPs as directed acyclic graphs (DAGs); proposed a new interest measure, the cascade participation index (CPI); outlined the general structure of a cascading spatiotemporal pattern miner (CSTPM); evaluated filtering strategies to enhance computational savings using a real-world crime data set and proposed a nested loop-based CSTPM to address the challenge posed by exponential cardinality of candidate patterns. This paper adds to our recent work by offering a new computational insight, namely, that the computational bottleneck for CSTP discovery lies in the interest measure evaluation. With this insight, we propose a new CSTPM based on spatiotemporal partitioning that significantly lowers the cost of interest measure evaluation. Analytical evaluation shows that our new CSTPM is correct and complete. Results from significant amount of new experimental evaluation with both synthetic and real data show that our new ST partitioning-based CSTPM outperforms the CSTPM from our previous work. We also present a case study that verifies the applicability of CSTP discovery process. |
| Sponsorship | IEEE IEEE Comput. Soc. Tech. Committee on Data Eng IEEE Computer Society |
| Starting Page | 1977 |
| Ending Page | 1992 |
| Page Count | 16 |
| File Size | 1263055 |
| File Format | |
| ISSN | 10414347 |
| Volume Number | 24 |
| Issue Number | 11 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2012-11-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Correlation Data mining Time measurement Hurricanes Indexes Data models Meteorology spatiotemporal partial order Cascading spatiotemporal patterns space-time K-function cascade participation index spatiotemporal join spatio-temporal continuity positive ST autocorrelation |
| Content Type | Text |
| Resource Type | Article |
| Subject | Information Systems Computational Theory and Mathematics Computer Science Applications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|