Loading...
Please wait, while we are loading the content...
Similar Documents
Reduction of phase ambiguity in an offset-qpsk receiver
| Content Provider | NASA Technical Reports Server (NTRS) |
|---|---|
| Author | Berner, Jeff Kinman, Peter |
| Copyright Year | 2004 |
| Description | Proposed modifications of an offset-quadri-phase-shift keying (offset-QPSK) transmitter and receiver would reduce the amount of signal processing that must be done in the receiver to resolve the QPSK fourfold phase ambiguity. Resolution of the phase ambiguity is necessary in order to synchronize, with the received carrier signal, the signal generated by a local oscillator in a carrier-tracking loop in the receiver. Without resolution of the fourfold phase ambiguity, the loop could lock to any of four possible phase points, only one of which has the proper phase relationship with the carrier. The proposal applies, more specifically, to an offset-QPSK receiver that contains a carrier-tracking loop like that shown in Figure 1. This carrier-tracking loop does not resolve or reduce the phase ambiguity. A carrier-tracking loop of a different design optimized for the reception of offset QPSK could reduce the phase ambiguity from fourfold to twofold, but would be more complex. Alternatively, one could resolve the fourfold phase ambiguity by use of differential coding in the transmitter, at a cost of reduced power efficiency. The proposed modifications would make it possible to reduce the fourfold phase ambiguity to twofold, with no loss in power efficiency and only relatively simple additional signal-processing steps in the transmitter and receiver. The twofold phase ambiguity would then be resolved by use of a unique synchronization word, as is commonly done in binary phase-shift keying (BPSK). Although the mathematical and signal-processing principles underlying the modifications are too complex to explain in detail here, the modifications themselves would be relatively simple and are best described with the help of simple block diagrams (see Figure 2). In the transmitter, one would add a unit that would periodically invert bits going into the QPSK modulator; in the receiver, one would add a unit that would effect different but corresponding inversions of bits coming out of the QPSK demodulator. The net effect of all the inversions would be that depending on which lock point the carrier-tracking loop had selected, all the output bits would be either inverted or non-inverted together; hence, the ambiguity would be reduced from fourfold to twofold, as desired. |
| File Size | 154116 |
| Page Count | 2 |
| File Format | |
| Alternate Webpage(s) | http://archive.org/details/NASA_NTRS_Archive_20110016690 |
| Archival Resource Key | ark:/13960/t4rj9dh67 |
| Language | English |
| Publisher Date | 2004-05-01 |
| Access Restriction | Open |
| Subject Keyword | Man/system Technology And Life Support Phase Shift Keying Transmitter Receivers Demodulators Signal Processing Binary Phase Shift Keying Power Efficiency Ambiguity Quadrature Phase Shift Keying Ntrs Nasa Technical Reports ServerĀ (ntrs) Nasa Technical Reports Server Aerodynamics Aircraft Aerospace Engineering Aerospace Aeronautic Space Science |
| Content Type | Text |
| Resource Type | Technical Report |