Loading...
Please wait, while we are loading the content...
Similar Documents
Verification of a byzantine-fault-tolerant self-stabilizing protocol for clock synchronization
| Content Provider | NASA Technical Reports Server (NTRS) |
|---|---|
| Author | Malekpour, Mahyar R. |
| Copyright Year | 2008 |
| Description | This paper presents the mechanical verification of a simplified model of a rapid Byzantine-fault-tolerant self-stabilizing protocol for distributed clock synchronization systems. This protocol does not rely on any assumptions about the initial state of the system except for the presence of sufficient good nodes, thus making the weakest possible assumptions and producing the strongest results. This protocol tolerates bursts of transient failures, and deterministically converges within a time bound that is a linear function of the self-stabilization period. A simplified model of the protocol is verified using the Symbolic Model Verifier (SMV). The system under study consists of 4 nodes, where at most one of the nodes is assumed to be Byzantine faulty. The model checking effort is focused on verifying correctness of the simplified model of the protocol in the presence of a permanent Byzantine fault as well as confirmation of claims of determinism and linear convergence with respect to the self-stabilization period. Although model checking results of the simplified model of the protocol confirm the theoretical predictions, these results do not necessarily confirm that the protocol solves the general case of this problem. Modeling challenges of the protocol and the system are addressed. A number of abstractions are utilized in order to reduce the state space. |
| File Size | 211988 |
| Page Count | 13 |
| File Format | |
| Alternate Webpage(s) | http://archive.org/details/NASA_NTRS_Archive_20080013512 |
| Archival Resource Key | ark:/13960/t9h46q48x |
| Language | English |
| Publisher Date | 2008-03-01 |
| Access Restriction | Open |
| Subject Keyword | Computer Programming And Software Time Division Multiple Access Fault Tolerance Protocol Computers Logic Programming Algorithms Stabilization Data Structures Mathematical Models Trees Mathematics Time Synchronization Ntrs Nasa Technical Reports ServerĀ (ntrs) Nasa Technical Reports Server Aerodynamics Aircraft Aerospace Engineering Aerospace Aeronautic Space Science |
| Content Type | Text |
| Resource Type | Article |