Loading...
Please wait, while we are loading the content...
Similar Documents
Removal and replacement of primary metal in ferroan lodranite mac 88177
| Content Provider | NASA Technical Reports Server (NTRS) |
|---|---|
| Author | Herrin, J. S. Humayun, M. Mittlefehldt, D. W. |
| Copyright Year | 2006 |
| Description | Collectively, acapulcoites and lodranites form a clan of primitive achondrites generally thought to have originated from the same parent body on the basis of similarities in petrology, mineral compositions, bulk compositions, cosmic ray exposure ages and oxygen isotope compositions, although considerable variation in some of these parameters has shown that the parent body was not entirely uniform. The presence of relict chondrules in several acapulcoites indicates that all were likely derived from chondrite-like precursor materials. The transition from acapulcoite to lodranite is gradual and corresponds to increasing metamorphic grade. Lodranites are generally coarser grained, but petrographic distinction between the two groups can also be made by modal abundances of troilite and plagioclase. Depletion of both these phases and incompatible lithophile trace elements in lodranites is consistent with their restitic origin formed by greater than 10% extraction of basaltic melt. Magnesian lodranites (e.g. Gibson, GRA 95209, Y-75274, Y-8002), some of which might also be considered transitional acapulcoites, have mineral and chemical compositions consistent with derivation by thermal metamorphism and partial melt extraction from acapulcoites, as would seem logical if samples represented different grades of metamorphism along a linear evolution trend. Ferromagnesian silicates in these lodranites tend to be displaced toward lower fe# (opx fe# 4-6) than the distribution observed in acapulcoites (opx fe# 6-11). A subset of lodranites, termed ferroan lodranites (e.g. FRO 90011, LEW 88280, Lodran, MAC 88177, Y-74357, Y- 791491/Y-791493), have ferromagnesian silicate minerals that are too Fe-rich (fe#>10) to have formed as simple restites from any known acapulcoite. Like silicates, metal-sulfide systematics of the ferroan lodranites are also inconsistent with a simple restitic origin. Logically, restitic lodranites should have been depleted in FeS during extraction of partial melts, since melting of the metal-sulfide system initiates at lower temperatures than melting of silicates. Yet, puzzingly, ferroan lodranites contain significant quantities (1.9-5.3 modal%) of troilite, indicating either (1) metal sulfide partial melts were retained during basaltic melt extraction or (2) later infusion of metal sulfide melts has occurred. In this study, we use trace siderophile elements in metals to assess the relative importance of each in creating the observed troilite enrichment. |
| File Size | 60696 |
| Page Count | 2 |
| File Format | |
| Alternate Webpage(s) | http://archive.org/details/NASA_NTRS_Archive_20060024688 |
| Archival Resource Key | ark:/13960/t3b04495b |
| Language | English |
| Publisher Date | 2006-01-01 |
| Access Restriction | Open |
| Subject Keyword | Lunar And Planetary Science And Exploration Removal Enrichment Pyroxenes Metals Melts Crystal Growth Siderophile Elements Iron Meteorites Chemical Composition Metamorphism Geology Minerals Inductively Coupled Plasma Mass Spectrometry Achondrites Ntrs Nasa Technical Reports ServerĀ (ntrs) Nasa Technical Reports Server Aerodynamics Aircraft Aerospace Engineering Aerospace Aeronautic Space Science |
| Content Type | Text |
| Resource Type | Article |