Loading...
Please wait, while we are loading the content...
Similar Documents
Investigation of sooting in microgravity droplet combustion: fuel-dependent effects
| Content Provider | NASA Technical Reports Server (NTRS) |
|---|---|
| Author | Manzello, Samuel L. Choi, Mun Young Hua, Ming |
| Copyright Year | 1999 |
| Description | Kumagai and coworkers first performed microgravity droplet combustion experiments [Kumagai, 1957]. The primary goal of these early experiments were to validate simple 'd(sup 2)-law models [Spalding, 1954, Godsave, 1954] Inherent in the 'd(sup 2) -law' formulation and in the scope of the experimental observation is the neglect of sooting behavior. In fact, the influence of sooting has not received much attention until more recent works [Choi et al., 1990; Jackson et al., 1991; Jackson and Avedisian, 1994; Choi and Lee, 1996; Jackson and Avedisian, 1996; Lee et al., 1998]:. Choi and Lee measured soot volume fraction for microgravity droplet flames using full-field light extinction and subsequent tomographic inversion [Choi and Lee, 1996]. In this investigation, soot concentrations were measured for heptane droplets and it was reported that soot concentrations were considerably higher in microgravity compared to the normal gravity flame. It was reasoned that the absence of buoyancy and the effects of thermophoresis resulted in the higher soot concentrations. Lee et al. [1998] performed soot measurement experiments by varying the initial droplet diameter and found marked influence of sooting on the droplet burning behavior. There is growing sentiment that sooting in droplet combustion must no longer be neglected and that "perhaps one of the most important outstanding contributions of (micro)g droplet combustion is the observation that in the absence of asymmetrical forced and natural convection, a soot shell is formed between the droplet surface and the flame, exerting an influence on the droplet combustion response far greater than previously recognized." [Law and Faeth, 1994]. One of the methods that we are exploring to control the degree of sooting in microgravity is to use different fuels. The effect of fuel structure on sooting propensity has been investigated for over-ventilated concentric coflowing buoyant diffusion flames. (Glassman, 1996]. In these investigations, the fuel flowrate was increased until smoke was observed to escape from the "luminous visible flame" [Glassman, 1996]. A total of 29 fuels were used in order to characterize relative sooting propensity. The sooting propensity of a particular fuel was assessed by comparing the flowrates for soot emission from the tip of the flame. It was reported that the sooting tendency for diffusion flames increased for fuels with higher rates of pyrolysis. Randolph and Law [1986 and not 1994] also examined the effect of fuel structure on droplet sooting behavior. In their experiments the droplets were separated from the bulk gas stream and quenched with nitrogen prior to gravimetric measurements. A variety of fuels were studied, namely aromatics, phenyl-alkanes and alkanes. The results were in qualitative agreement with the work of Glassman [1986]. Vander Wal et al. [1994] performed relative soot concentration measurements using laser-induced incandescence for heptane and decane fuel droplets burning under normal-gravity conditions. It was found that soot volume fractions for decane was more than a factor of two larger than that for heptane. Although the normal-gravity investigations have provided some important insights regarding the influence of fuel structure on the sooting behavior of droplet flames, results cannot be easily extrapolated for microgravity studies since increased residence times and thermophoretic effects must be considered in greater detail. Several studies have compared sooting behavior of different fuel droplets burning under microgravity conditions [Card and Choi, 1990; Jackson et al., 1991; Jackson and Avedisian, 1994], however, detailed quantitative results were not provided. In all of these previous studies, the degree of sooting was only visually assessed from an incandescent backlighted image of the soot containing region. Such techniques can provide misleading results regarding sooting behavior [Choi, 1996]. |
| File Size | 316083 |
| Page Count | 4 |
| File Format | |
| Alternate Webpage(s) | http://archive.org/details/NASA_NTRS_Archive_20000005015 |
| Archival Resource Key | ark:/13960/t2s51m40t |
| Language | English |
| Publisher Date | 1999-01-01 |
| Access Restriction | Open |
| Subject Keyword | Inorganic, Organic And Physical Chemistry Pyrolysis Concentration Composition Forced Convection Gravitational Effects Heptanes Soot Flow Velocity Alkanes Combustion Microgravity Thermophoresis Drops Liquids Ntrs Nasa Technical Reports ServerĀ (ntrs) Nasa Technical Reports Server Aerodynamics Aircraft Aerospace Engineering Aerospace Aeronautic Space Science |
| Content Type | Text |
| Resource Type | Article |