Loading...
Please wait, while we are loading the content...
Similar Documents
Parallelizing navier-stokes computations on a variety of architectural platforms
| Content Provider | NASA Technical Reports Server (NTRS) |
|---|---|
| Author | Hayder, M. E. Pillay, S. K. Jayasimha, D. N. |
| Copyright Year | 1997 |
| Description | We study the computational, communication, and scalability characteristics of a Computational Fluid Dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architectural platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), distributed memory multiprocessors with different topologies-the IBM SP and the Cray T3D. We investigate the impact of various networks, connecting the cluster of workstations, on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms. |
| File Size | 1219651 |
| Page Count | 32 |
| File Format | |
| Alternate Webpage(s) | http://archive.org/details/NASA_NTRS_Archive_19970034709 |
| Archival Resource Key | ark:/13960/t59d1w36g |
| Language | English |
| Publisher Date | 1997-09-01 |
| Access Restriction | Open |
| Subject Keyword | Numerical Analysis Messages Computational Fluid Dynamics Topology Multiprocessing Computers Memory Computers Parallel Processing Computers Connectors Distributed Memory Navier-stokes Equation Flow Distribution Libraries Workstations Cray Computers Ntrs Nasa Technical Reports ServerĀ (ntrs) Nasa Technical Reports Server Aerodynamics Aircraft Aerospace Engineering Aerospace Aeronautic Space Science |
| Content Type | Text |
| Resource Type | Article |