Loading...
Please wait, while we are loading the content...
Similar Documents
A selection principle in benard-type convection
| Content Provider | NASA Technical Reports Server (NTRS) |
|---|---|
| Author | Knightly, G. H. Sather, D. |
| Copyright Year | 1983 |
| Description | In a Benard-type convection problem, the stationary flows of an infinite layer of fluid lying between two rigid horizontal walls and heated uniformly from below are determined. As the temperature difference across the layer increases beyond a certain value, other convective motions appear. These motions areoften cellular in character in that their streamlines are confined to certain well-defined cells having, for example, the shape of rolls or hexagons. A selection principle that explains why hexagonal cells seem to be preferred for certain ranges of the parameters is formulated. An operator-theoretical formulation of one generalized Bernard problem is given. The infinite dimensional problem is reduced to one of solving a finite dimensional system of equations, namely, the selection equations. These equations are solved and a linearized stability analysis of the resultant stationary flows is presented. |
| File Size | 2783750 |
| Page Count | 52 |
| File Format | |
| Alternate Webpage(s) | http://archive.org/details/NASA_NTRS_Archive_19840023489 |
| Archival Resource Key | ark:/13960/t6qz72p21 |
| Language | English |
| Publisher Date | 1983-01-01 |
| Access Restriction | Open |
| Subject Keyword | Fluid Mechanics And Heat Transfer Liapunov Functions Theorems Computational Fluid Dynamics Laminar Flow Temperature Gradients Boussinesq Approximation Convection Benard Cells Ntrs Nasa Technical Reports ServerĀ (ntrs) Nasa Technical Reports Server Aerodynamics Aircraft Aerospace Engineering Aerospace Aeronautic Space Science |
| Content Type | Text |
| Resource Type | Technical Report |