Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | frontiers |
|---|---|
| Author | Janusz, Paulina Perron, Vincent Knellwolf, Christoph Fäh, Donat |
| Description | Amplification factors are often estimated using empirical methods based on earthquake ground motion; however, especially in low-seismicity urban areas, recording a statistically representative number of high-quality signals may take years. Hence, the attempts to use ambient vibration instead have progressed. This includes the development of the hybrid site-to-reference spectral ratio (SSRh) method that combines earthquake and ambient vibration recordings. We applied the method in the Lucerne area in central Switzerland that is characterized by low-to-moderate seismicity but was struck by several strong earthquakes in historical times (i.e., Mw 5.9 in 1,601) and is located in a glacial basin filled with unconsolidated deposits prone to significant amplification. To develop the high-resolution local site amplification model for the city of Lucerne using the SSRh method, we took advantage of a small seismic monitoring network installed in the Lucerne area in total for about a year and the stations of the Swiss Strong Motion Network (SSMNet). In addition, we performed two extensive surveys to record ambient vibrations and used dozens of measurements performed in the area since 2001. The resulting amplification model referring to the Swiss reference bedrock conditions indicates high-amplification factors (up to 10-fold) for a broad range of frequencies. The model is consistent with geological data and site response proxies such as f0 values. The direct comparison of our results... |
| Abstract | The amplification factors are often estimated using empirical methods based on earthquake ground motion, however, especially in low-seismicity urban areas, recording of a statistically representative number of high-quality signals may take years. Hence, the attempts to use ambient vibration instead have progressed. This includes the development of the hybrid site-to-reference spectral ratio method (SSRh) that combines earthquake and ambient vibration recordings. We applied the method in the Lucerne area in central Switzerland that is characterized by low-to-moderate seismicity but was struck by several strong earthquakes in historical times (i.e. Mw 5.9 in 1601) and is located in a glacial basin filled with unconsolidated deposits prone to significant amplification. To develop the high-resolution local site amplification model for the city of Lucerne using the SSRh method, we took advantage of a small seismic monitoring network installed in the Lucerne area in total for about a year and the stations of the Swiss Strong Motion Network (SSMNet). In addition, we performed two extensive surveys to record ambient vibrations and used dozens of measurements performed in the area since 2001. The resulting amplification model referred to the Swiss reference bedrock conditions indicates high amplification factors (up to 10-fold) for a broad range of frequencies. The model is consistent with geological data and site response proxies such as f0 values. The direct comparison of our results with the SSR amplification functions for several sites shows good agreement. However, the model is characterized by high uncertainty and influenced by daily variation of the noise wavefield as well as the spatial distribution of the stations of the seismic network. We also discuss the extent of the applicability of the method, concluding that the main factor influencing its performance is not the distance but the similarity of the site condition between the stations. |
| ISSN | 22966463 |
| DOI | 10.3389/feart.2022.885724 |
| Volume Number | 10 |
| Journal | Frontiers in Earth Science |
| Language | English |
| Publisher Date | 2022-05-09 |
| Access Restriction | Open |
| Subject Keyword | Urban areas Earthquake ground-motion Seismic site effects Seismic hazard Microzonation Ambient vibration |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|