Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | frontiers |
|---|---|
| Author | Kolotkov, Dmitrii Y. |
| Abstract | Slow magnetoacoustic waves represent an important tool for probing the solar coronal plasma. The majority of seismological methods with slow waves are based on a weakly non-adiabatic approach, which assumes the coronal energy transport has only weak effects on the wave dynamics. Despite it significantly simplifies the application of coronal seismology by slow waves, this assumption omits a number of important and confidently observed effects and thus puts strong limitations on the reliability of seismological estimations. We quantitatively assess the applicability of the weak thermal conduction theory to coronal seismology by slow waves. We numerically model the linear standing slow wave in a 1D coronal loop, with field-aligned thermal conduction $\kappa_\parallel$ as a free parameter and no restrictions on its efficiency. The time variations of the perturbed plasma parameters, obtained numerically with full conductivity, are treated as potential observables and analysed with the standard data processing techniques. The slow wave oscillation period is found to increase with $\kappa_\parallel$ by about 30\%, indicating the corresponding modification in the effective wave speed, which is missing from the weak conduction theory. Phase shifts between plasma temperature and density perturbations are found to be well consistent with the approximate weakly conductive solution for all considered values of $\kappa_\parallel$. In contrast, the comparison of the numerically obtained ratio of temperature and density perturbation amplitudes with the weak theory revealed relative errors up to 30--40\%. We use these parameters to measure the effective adiabatic index of the coronal plasma directly as the ratio of the effective slow wave speed to the standard sound speed and in the polytropic assumption, which is found to be justified in a weakly conductive regime only, with relative errors up to 14\% otherwise. The damping of the initial perturbation is found to be of a non-exponential form during the first cycle of oscillation, which could be considered as an indirect signature of entropy waves in the corona, also not described by weak conduction theory. The performed analysis and obtained results offer a more robust scheme of coronal seismology by slow waves, with reasonable simplifications and without the loss of accuracy. |
| ISSN | 2296987X |
| DOI | 10.3389/fspas.2022.1073664 |
| Volume Number | 9 |
| Journal | Frontiers in Astronomy and Space Sciences |
| Language | English |
| Publisher Date | 2022-12-08 |
| Access Restriction | Open |
| Subject Keyword | Magnetohydrodynamics Coronal seismology Corona Sun Waves |
| Content Type | Text |
| Resource Type | Article |
| Subject | Astronomy and Astrophysics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|