Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | frontiers |
|---|---|
| Author | Rozo, Andrea Moeyersons, Jonathan Morales, John Garcia van der Westen, Roberto Lijnen, Lien Smeets, Christophe Jantzen, Sjors Monpellier, Valerie Ruttens, David Van Hoof, Chris Van Huffel, Sabine Groenendaal, Willemijn Varon, Carolina |
| Abstract | Changes in respiratory rate have been found to be one of the early signs of health deterioration in patients. In remote environments where diagnostic tools and medical attention are scarce, such as deep space exploration, the monitoring of the respiratory signal becomes crucial to timely detect life-threatening conditions. Nowadays, this signal can be measured using wearable technology; however, the use of such technology is often hampered by the low quality of the recordings, which leads more often to wrong diagnosis and conclusions. Therefore, to apply these data in diagnosis analysis, it is important to determine which parts of the signal are of sufficient quality. In this context, this study aims to evaluate the performance of a signal quality assessment framework, where two machine learning algorithms (support vector machine – SVM, and convolutional neural network – CNN) were used. The models were pre-trained using data of patients suffering from chronic obstructive pulmonary disease. The generalization capability of the models was evaluated by testing them on data from a different patient population, presenting normal and pathological breathing. The new patients underwent bariatric surgery and performed a controlled breathing protocol, displaying six different breathing patterns. Data augmentation (DA) and transfer learning (TL) were used to increase the size of the training set and to optimize the models for the new dataset. The effect of the different breathing patterns on the performance of the classifiers was also studied. The SVM did not improve when using DA, however, when using TL, the performance improved significantly (p<0.05) compared to DA. The opposite effect was observed for CNN, where the biggest improvement was obtained using DA, while TL did not show a significant change. The models presented a low performance for shallow, slow and fast breathing patterns. These results suggest that it is possible to classify respiratory signals obtained with wearable technologies using pre-trained machine learning models. This will allow focusing on the relevant data and avoid misleading conclusions because of the noise, when designing bio-monitoring systems. |
| ISSN | 22964185 |
| DOI | 10.3389/fbioe.2022.806761 |
| Volume Number | 10 |
| Journal | Frontiers in Bioengineering and Biotechnology |
| Language | English |
| Publisher Date | 2022-02-14 |
| Access Restriction | Open |
| Subject Keyword | Machine learning Respiratory monitoring Signal quality Data augmentation Transfer Learning |
| Content Type | Text |
| Resource Type | Article |
| Subject | Histology Bioengineering Biomedical Engineering Biotechnology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|