Loading...
Please wait, while we are loading the content...
Similar Documents
Semiconductor nanomembranes: a platform for new properties via strain engineering.
| Content Provider | Europe PMC |
|---|---|
| Author | Cavallo, Francesca Lagally, Max G |
| Copyright Year | 2012 |
| Abstract | New phenomena arise in single-crystal semiconductors when these are fabricated in very thin sheets, with thickness at the nanometer scale. We review recent research on Si and Ge nanomembranes, including the use of elastic strain sharing, layer release, and transfer, that demonstrate new science and enable the fabrication of materials with unique properties. Strain engineering produces new strained forms of Si or Ge not possible in nature, new layered structures, defect-free SiGe sheets, and new electronic band structure and photonic properties. Through-membrane elastic interactions cause the double-sided ordering of epitaxially grown nanostressors on Si nanomembranes, resulting in a spatially and periodically varying strain field in the thin crystalline semiconductor sheet. The inherent influence of strain on the band structure creates band gap modulation, thereby creating effectively a single-element electronic superlattice. Conversely, large-enough externally applied strain can make Ge a direct-band gap semiconductor, giving promise for Group IV element light sources. |
| ISSN | 19317573 |
| Journal | Nanoscale Research Letters |
| Volume Number | 7 |
| PubMed Central reference number | PMC3506464 |
| Issue Number | 1 |
| PubMed reference number | 23153167 |
| e-ISSN | 1556276X |
| DOI | 10.1186/1556-276x-7-628 |
| Language | English |
| Publisher | Springer |
| Publisher Date | 2012-11-15 |
| Access Restriction | Open |
| Rights License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2012 Cavallo and Lagally; licensee Springer. |
| Subject Keyword | Semiconductor Nanomembranes Strain Electronic properties |
| Content Type | Text |
| Resource Type | Article |
| Subject | Nanoscience and Nanotechnology Condensed Matter Physics Materials Science |