Loading...
Please wait, while we are loading the content...
Central nervous system tolerance to boron neutron capture therapy with p-boronophenylalanine.
| Content Provider | Europe PMC |
|---|---|
| Author | Morris, G. M. Coderre, J. A. Micca, P. L. Fisher, C. D. Capala, J. Hopewell, J. W. |
| Abstract | A rat spinal cord model was used to evaluate the effects of boron neutron capture irradiation on the central nervous system (CNS), using a range of doses of the boron delivery agent p-boronophenylalanine (BPA). Three doses of BPA 700, 1000 and 1600 mg kg(-1) were used to establish the biodistribution of boron-10 (10B) in blood, spinal cord and brain over a 3-h period after intraperitoneal (i.p.) administration. At the lowest dose of BPA used, blood 10B levels remained relatively stable over the 3-h sampling period. With the two higher doses of BPA, blood 10B concentrations were greatest at 1 h after BPA administration, and thereafter exhibited a biphasic clearance profile. The largest decline in blood 10B levels occurred between 1 and 2 h after i.p. injection and was most pronounced (approximately 45%) in the highest BPA dose group. Considered overall, 10B concentrations were marginally lower in the spinal cord than in the brain. Levels of 10B in both of these organs showed a slow but progressive increase with time after administration of BPA. The 10B concentration ratio for blood relative to CNS tissue increased with BPA dosage and reached a peak value of approximately 10:1 in the highest BPA dose group, at 1 h after i.p. injection. However, at 3 h after injection the 10B concentration ratios had decreased to approximately 3:1 in all of the BPA dose groups. After irradiation with thermal neutrons in combination with BPA at blood 10B concentrations of approximately 42 and approximately 93 microg g(-1), myelopathy developed after latent intervals of 20.0 +/- 0.6 and 20.0 +/- 1.2 weeks respectively. ED50 values (+/- s.e.) for the incidence of myelopathy were calculated from probit-fitted curves, and were 17.5 +/- 0.7 and 25.0 +/- 0.6 Gy after irradiation with thermal neutrons at blood 10B levels of approximately 42 and approximately 93 microg g(-1) respectively. The compound biological effectiveness (CBE) factor values, estimated from these data, were 0.67 +/- 0.23 and 0.48 +/- 0.18 respectively. This compared with a previous estimate of 0.88 +/- 0.14 at a blood 10B concentration of approximately 19 microg g(-1). It was concluded that the value of the CBE factor was not influenced by the level of 10B in the blood, but by the blood:CNS 10B concentration ratio. In effect, the CBE factor decreases as the concentration ratio increases. Simulations using boron neutron capture therapy (BNCT) treatment planning software indicate a significant therapeutic advantage could be obtained in moving to higher BPA doses than those in current clinical use. |
| ISSN | 00070920 |
| Journal | British Journal of Cancer |
| Volume Number | 76 |
| PubMed Central reference number | PMC2228217 |
| Issue Number | 12 |
| PubMed reference number | 9413952 |
| e-ISSN | 15321827 |
| DOI | 10.1038/bjc.1997.607 |
| Language | English |
| Publisher | Nature Publishing Group |
| Publisher Date | 1997-01-01 |
| Access Restriction | Open |
| Rights License | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/. |
| Content Type | Text |
| Resource Type | Article |
| Subject | Cancer Research Oncology |